$V_{RRM} = 6000 V$

 $I_{FAVM} = 1100 A$

 $I_{FSM} = 18 \text{ kA}$

 $V_{F0} = 1.5 V$

 $r_F = 0.6 \text{ m}\Omega$

 $V_{DClink} = 3800 V$

Fast Recovery Diode

5SDF 10H6004

Doc. No. 5SYA1109-02 Sep. 01

- · Patented free-floating silicon technology
- · Low on-state and switching losses
- Optimized for use as freewheeling diode in high-voltage GTO converters
- · Standard press-pack housing, hermetically plasma-welded
- · Cosmic radiation withstand rating

Blocking

V_{RRM}	Repetitive peak reverse voltage	6000 V	Half sine wave, t_P = 10 ms, f = 50 Hz		
I _{RRM}	Repetitive peak reverse current	≤ 50 mA	$V_R = V_{RRM,} T_j = 125^{\circ}C$		
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	3800 V	100% Duty	Ambient cosmic radiation at sea level in open air.	
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	V	5% Duty		

Mechanical data (see Fig. 7)

Е	Mounting force	min.		36 kN
F _m	Mounting force —	max.		44 kN
а	Acceleration: Device unclamped Device clamped			50 m/s ² 200 m/s ²
m	Weight			0.83 kg
Ds	Surface creepage distance		≥	30 mm
Da	Air strike distance		≥	20 mm

On-state (see Fig. 2, 3)

I _{FAVM}	Max. average on-state current	1100 A	Half sine wave, T _c = 85°C
I _{FRMS}	Max. RMS on-state current	1700 A	
I _{FSM}	Max. peak non-repetitive	18 kA	tp = 10 ms Before surge:
	surge current	44 kA	tp = 1 ms $T_c = T_j = 125^{\circ}C$
∫l ² dt	Max. surge current integral	1.62·10 ⁶ A ² s	tp = 10 ms After surge:
		0.97·10 ⁶ A ² s	tp = 1 ms $V_R \approx 0 \text{ V}$
V _F	Forward voltage drop	≤ 3 V	I _F = 2500 A
V _{F0}	Threshold voltage	1.5 V	Approximation for $T_j = 125$ °C
r _F	Slope resistance	0.6 mΩ	I _F = 2006000 A

Turn-on (see Fig. 4, 5)

V _{fr} Peak forward recovery vo	age <	95 V	di/dt = 500 A/μs, T _j = 125°C
--	-------	------	--

Turn-off (see Fig. 6)

Irr	Reverse recovery current	≤	1000 A	di/dt = 300 A/µs,	I _F = 3000 A,
Q _{rr}	Reverse recovery charge	≤	4700 μC	'	$V_{RM} = 6000 V,$
E _{rr}	Turn-off energy	S	3.5 J	$C_S = 3\mu F$ (GTO snubber circuit)	

Thermal (see Fig. 1)

Tj	Operating junction temperature range	-40125°C		
T _{stg}	Storage temperature range	-40125°C	_	
R _{thJC}	Thermal resistance junction to case	≤ 24 K/kW	Anode side cooled	
		≤ 24 K/kW	Cathode side cooled	F _m =
		≤ 12 K/kW	Double side cooled	36 44 kN
R _{thCH}	Thermal resistance case to heatsink	≤ 6 K/kW	Single side cooled	
		≤ 3 K/kW	Double side cooled	

Analytical function for transient thermal impedance.

$$Z_{\text{thJC}}(t) = \sum_{i=1}^{n} R_{i}(1 - e^{-t/\tau_{i}})$$

i	1	2	3	4			
R _i (K/kW) 11.83 2.00 1.84 0.7							
τ _i (s) 0.47 0.091 0.01 0.0047							
F _m = 36 44 kN Double side cooled							

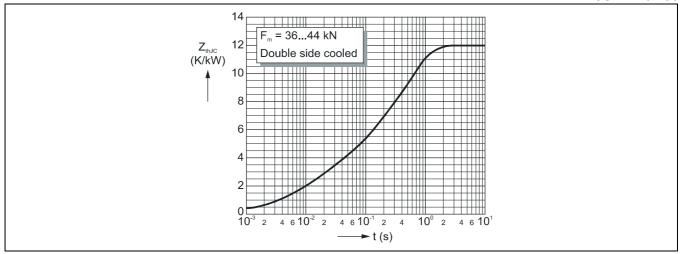


Fig. 1 Transient thermal impedance (junction-to-case) vs. time in analytical and graphical form (max. values).

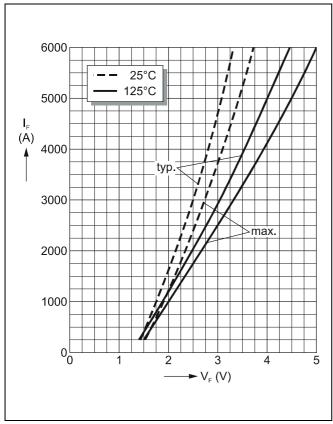


Fig. 2 Forward current vs. forward voltage (typ. and max. values) and linear approximation of max. curve at 125°C.

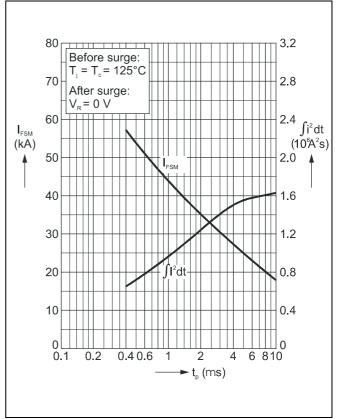
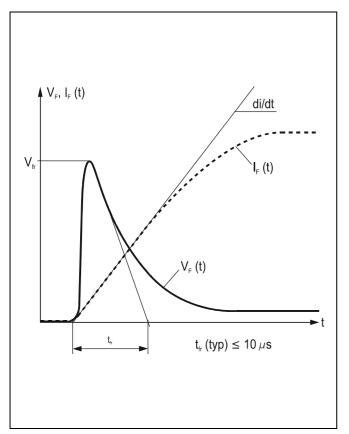



Fig. 3 Surge current and fusing integral vs. pulse width (max. values) for non-repetitive, half-sinusoidal surge current pulses.

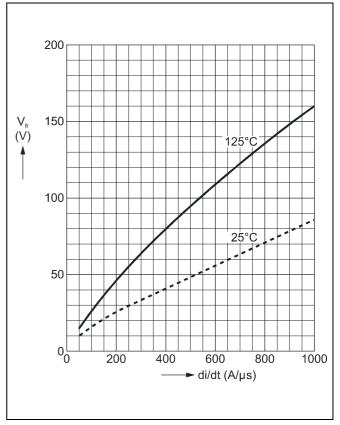


Fig. 4 Typical forward voltage waveform when the diode is turned on with a high di/dt.

Fig. 5 Forward recovery voltage vs. turn-on di/dt (max. values).

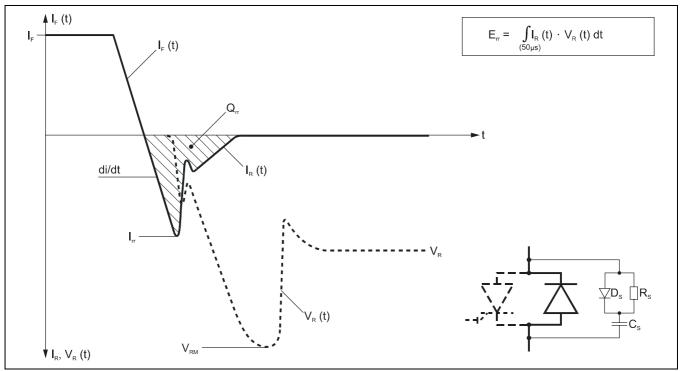


Fig. 6 Typical current and voltage waveforms at turn-off when the diode is connected to an RCD snubber, as often used in GTO circuits.

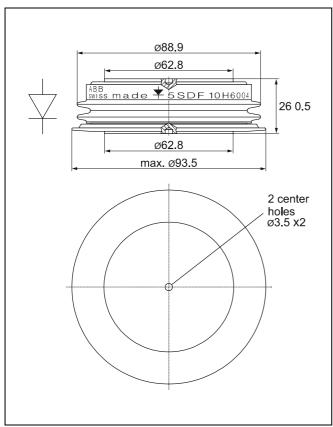


Fig. 7 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG

Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland

Telephone +41 (0)62 888 6419 Fax +41 (0)62 888 6306 Email abbsem@ch.abb.com Internet www.abbsem.com Doc. No. 5SYA1109-02 Sep. 01