V _{RRM}	=	4500 V
I _{FAVM}	=	1400 A
I _{FSM}	=	25 kA
V _{F0}	=	1.2 V
r _F	=	0.32 mΩ
V _{DClink}	=	2200 V

Г

Fast Recovery Diode 5SDF 14H4505

Doc. No. 5SYA1110-02 Sep. 01

- Patented free-floating silicon technology
- Low on-state and switching losses
- Optimized for use as freewheeling diode in GTO converters with low DC link voltages
- Standard press-pack housing, hermetically plasma-welded
- Cosmic radiation withstand rating

Blocking

V _{RRM}	Repetitive peak reverse voltage	4500 V	Half sine wave, t_P = 10 ms, f = 50 Hz		
I _{RRM}	Repetitive peak reverse current	\leq 50 mA	$V_R = V_{RRM,} T_j = 125^{\circ}C$		
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	2200 V	100% Duty	Ambient cosmic radiation at sea level in open air.	
V _{DClink}	Permanent DC voltage for 100 FIT failure rate	V	5% Duty		

Mechanical data (see Fig. 12)

F _m	Mounting force	min.		36 kN
Γm		max.		44 kN
а	Acceleration: Device unclamped Device clamped			50 m/s ² 200 m/s ²
m	Weight			0.83 kg
Ds	Surface creepage distance		\geq	30 mm
D _a	Air strike distance		\geq	20 mm

On-state (see Fig. 2, 3)

I _{FAVM}	Max. average on-state current	1400 A	Half sine wave, $T_c = 85^{\circ}C$
I _{FRMS}	Max. RMS on-state current	2200 A	
I _{FSM}	Max. peak non-repetitive	25 kA	tp = 10 ms Before surge:
	surge current	60 kA	$tp = 1 ms T_c = T_j = 125^{\circ}C$
∫l²dt	Max. surge current integral	3.13.10 ⁶ A ² s	tp = 10 ms After surge:
		1.8.10 ⁶ A ² s	tp = 1 ms $V_R \approx 0 V$
V_{F}	Forward voltage drop	≤ 2 V	I _F = 2500 A
V_{F0}	Threshold voltage	1.2 V	Approximation for $T_j = 125^{\circ}C$
r _F	Slope resistance	0.32 mΩ	I _F = 4004000 A

Turn-on (see Fig. 4, 5)

$V_{\rm fr}$	Peak forward recovery voltage	\leq	30 V	di/dt = 500 A/µs, T _j = 125°C
--------------	-------------------------------	--------	------	--

Turn-off (see Fig. 6 to 11)

I _{rr}	Reverse recovery current	\leq	1000 A	$di/dt = 300 \text{ A}/\mu \text{s}, I_F = 1000 \text{ A},$	
Q _{rr}	Reverse recovery charge	\leq	3700 µC	$T_j = 125^{\circ}C, V_{RM} = 4500 V,$	
Err	Turn-off energy	\leq	1.6 J	$C_s = 3\mu F$ (GTO snubber circuit)	

Thermal (see Fig. 01)

Tj	Operating junction temperature range	-40125°C		
T _{stg}	Storage temperature range	-40125°C		
R_{thJC}	Thermal resistance junction to case	≤ 24 K/kW	Anode side cooled	
		≤ 24 K/kW	Cathode side cooled	F _m =
		≤ 12 K/kW	Double side cooled	36… 44 kN
R_{thCH}	Thermal resistance case to heatsink	≤ 6 K/kW	Single side cooled	
		≤ 3 K/kW	Double side cooled	

Analytical function for transient thermal impedance.

$$Z_{\text{thJC}}(t) = \sum_{i=1}^{n} R_{i}(1 - e^{-t/\tau_{i}})$$

i	1	2	3	4		
R _i (K/kW)	7.44	2.00	1.84	0.71		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
F _m = 36… 44 kN Double side cooled						

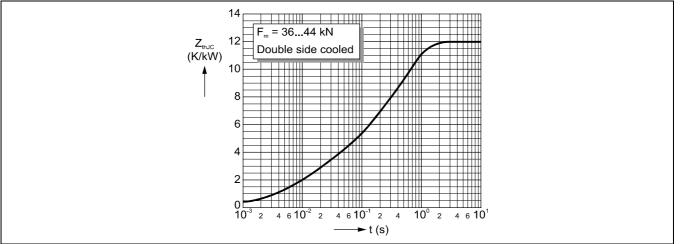


Fig. 1 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

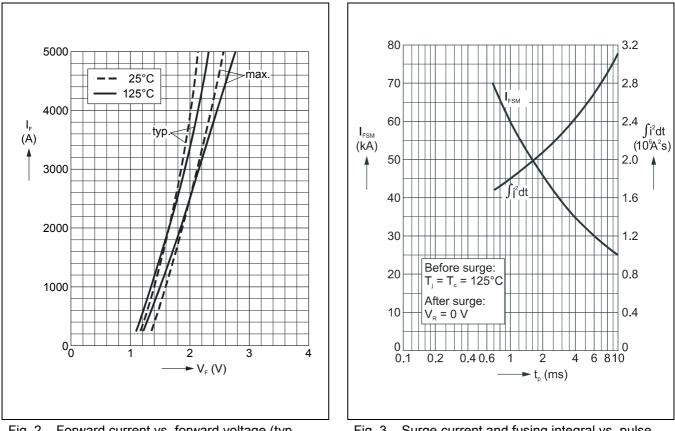
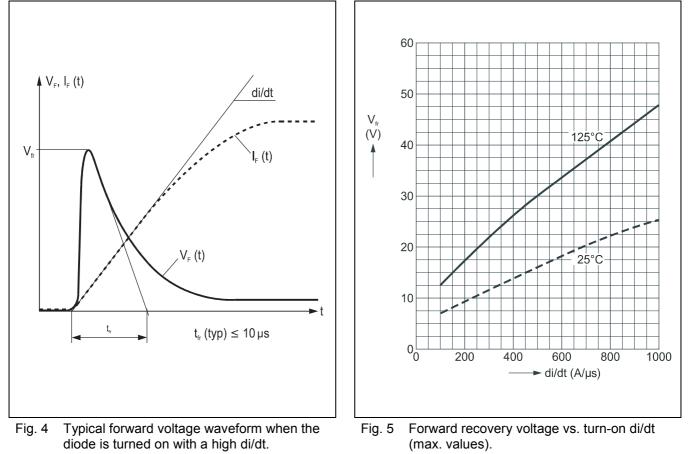



Fig. 2 Forward current vs. forward voltage (typ. and max. values) and linear approximation of max. curve at 125°C.

Fig. 3 Surge current and fusing integral vs. pulse width (max. values) for non-repetitive, half-sinusoidal surge current pulses.

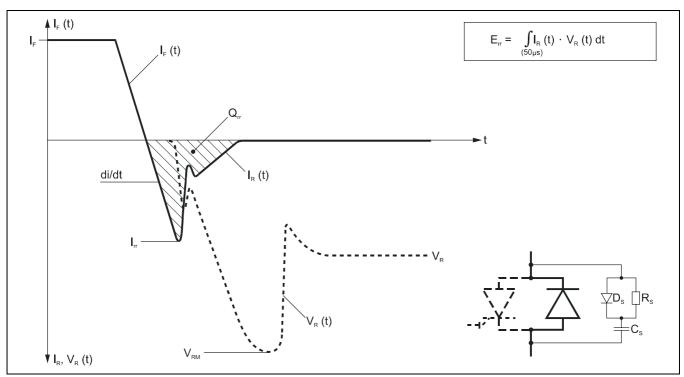


Fig. 6 Typical current and voltage waveforms at turn-off when the diode is connected to an RCD snubber, as often used in GTO circuits.

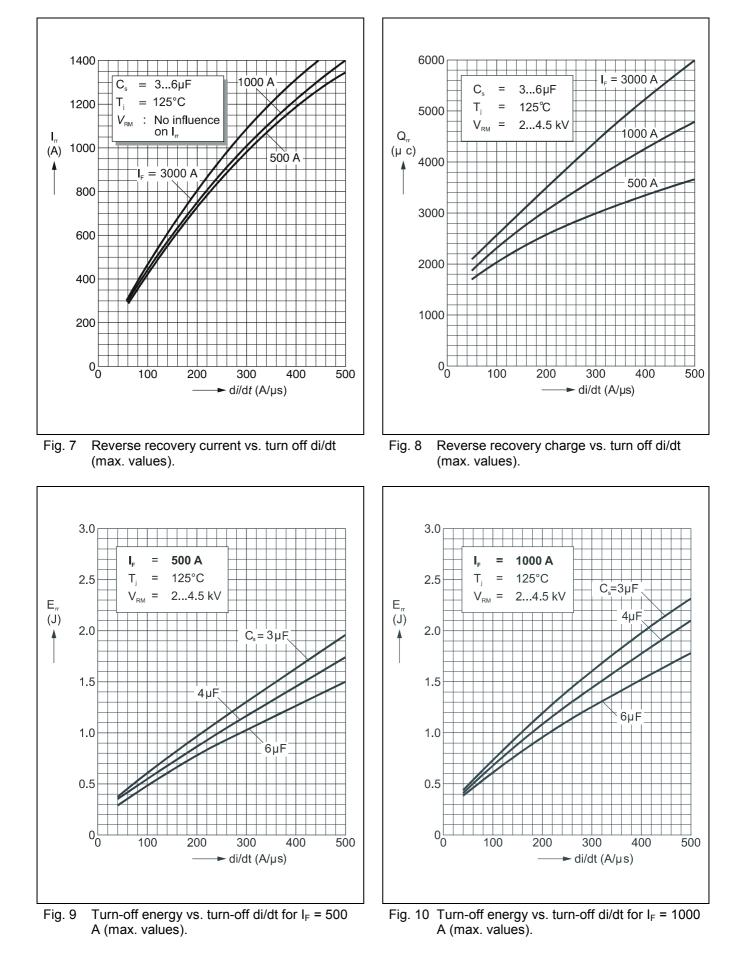


ABB Semiconductors AG reserves the right to change specifications without notice.

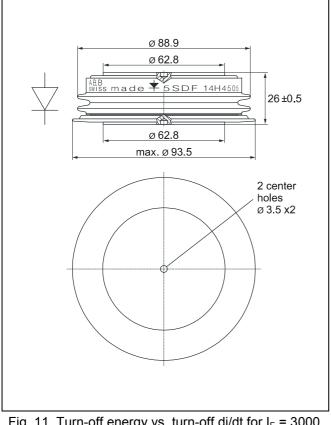


Fig. 11 Turn-off energy vs. turn-off di/dt for I_F = 3000 A (max. values).

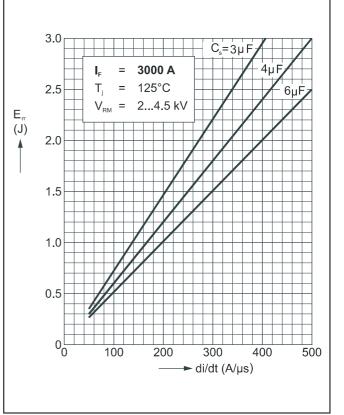


Fig. 12 Transient thermal impedance (junction-tocase) vs. time in analytical and graphical form (max. values).

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland

 Telephone
 +41 (0)62 888 6419

 Fax
 +41 (0)62 888 6306

 Email
 abbsem@ch.abb.com

 Internet
 www.abbsem.com

Doc. No. 5SYA1110-02 Sep. 01