

POWER MOS FET FIELD EFFECT POWER TRANSISTOR

IRFD122,123

1.1 AMPERES 100, 60 VOLTS RDS(ON) = 0.4 Ω

This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability.

This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors.

Features

- Polysilicon gate Improved stability and reliability
- No secondary breakdown Excellent ruggedness
- Ultra-fast switching Independent of temperature
- Voltage controlled High transconductance
- Low input capacitance Reduced drive requirement
- Excellent thermal stability Ease of paralleling

maximum ratings (T_A = 25°C) (unless otherwise specified)

RATING	SYMBOL	IRFD122	IRFD123	UNITS
Drain-Source Voltage	V _{DSS}	100	60	Volts
Drain-Gate Voltage, $R_{GS} = 1M\Omega$	V _{DGR}	100	60	Volts
Continuous Drain Current @ T _A = 25°C ⁽¹⁾ @ T _A = 100°C ⁽¹⁾	ID	1.1 0.70	1.1 0.70	A
Pulsed Drain Current ⁽²⁾	I _{DM}	4.4	4.4	Α
Gate-Source Voltage	V _{GS}	±20	±20	Volts
Total Power Dissipation @ T _A = 25°C Derate Above 25°C	PD	1.0 8	1.0 8	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-55 to 150	-55 to 150	°c

thermal characteristics

Thermal Resistance, Junction to Ambient ⁽¹⁾	$R_{ heta JA}$	125	125	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	300	300	°C

⁽¹⁾ Device mounted to vertical pc board in free air with drain lead soldered to 0.20 in² minimum copper run area.

(2) Repetitive Rating: Pulse width limited by max. junction temperature.

electrical characteristics ($T_A = 25^{\circ}C$) (unless otherwise specified)

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
ff characteristics						
Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 250 μA)	IRFD122 IRFD123	BVDSS	100 60			Volts
Zero Gate Voltage Drain Current (V _{DS} = Max Rating, V _{GS} = 0V, T _A = 25°C) (V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _A = 125°C)		IDSS			250 1000	μΑ
Gate-Source Leakage Current (V _{GS} = ±20V)		lass			±500	nA

on characteristics*

Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 250 μA)	T _A = 25°C	V _{GS(TH)}	2.0	WARRIED	4.0	Volts
On-State Drain Current (V _{GS} = 10V, V _{DS} = 10V)		I _{D(ON)}	1.1			Α
Static Drain-Source On-State Resistance (V _{GS} = 10V, I _D = 0.6A)		R _{DS(ON)}	_	0.30	0.40	Ohms
Forward Transconductance (V _{DS} = 10V, I _D = 0.6A)		9fs	.63	1.0	-	mhos

dynamic characteristics

Input Capacitance	V _{GS} = 0V	C _{iss}	_	410	600	рF
Output Capacitance	V _{DS} = 25V	Coss	_	160	400	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}		40	100	pF

switching characteristics*

Turn-on Delay Time	V _{DS} = 30V	t _{d(on)}	_	15		ns
Rise Time	I _D = 0.6A, V _{GS} = 15V	t _r		30		ns
Turn-off Delay Time	R_{GEN} = 50 Ω , R_{GS} = 12.5 Ω	t _{d(off)}	_	25		ns
Fall Time	(R _{GS (EQUIV.)} = 10Ω)	t _f		10	_	ns

source-drain diode ratings and characteristics*

Continuous Source Current	Is	_	_	1.1	Α
Pulsed Source Current	Ism	_		4.4	Α
Diode Forward Voltage I _S = 1.1A (T _A = 25°C, V _{GS} = 0V)	V _{SD}		0.6	2.3	Volts
Reverse Recovery Time (I _S = 1.3A, di _S /dt = 100A/ μ s, T _A = 125°C)	t _{rr} Q _{RR}	_	75 0.7		ns μC

*Pulse Test: Pulse width $\leq 300 \,\mu$ s, duty cycle $\leq 2\%$

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED $R_{DS[ON]}$ AND $V_{GS[TH]}$ VS. TEMP.