POWER MOS FET FIELD EFFECT POWER TRANSISTOR IRFD122,123 1.1 AMPERES 100, 60 VOLTS RDS(ON) = 0.4 Ω This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability. This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors. #### **Features** - Polysilicon gate Improved stability and reliability - No secondary breakdown Excellent ruggedness - Ultra-fast switching Independent of temperature - Voltage controlled High transconductance - Low input capacitance Reduced drive requirement - Excellent thermal stability Ease of paralleling ## maximum ratings (T_A = 25°C) (unless otherwise specified) | RATING | SYMBOL | IRFD122 | IRFD123 | UNITS | |--|-----------------------------------|-------------|-------------|----------------| | Drain-Source Voltage | V _{DSS} | 100 | 60 | Volts | | Drain-Gate Voltage, $R_{GS} = 1M\Omega$ | V _{DGR} | 100 | 60 | Volts | | Continuous Drain Current @ T _A = 25°C ⁽¹⁾
@ T _A = 100°C ⁽¹⁾ | ID | 1.1
0.70 | 1.1
0.70 | A | | Pulsed Drain Current ⁽²⁾ | I _{DM} | 4.4 | 4.4 | Α | | Gate-Source Voltage | V _{GS} | ±20 | ±20 | Volts | | Total Power Dissipation @ T _A = 25°C
Derate Above 25°C | PD | 1.0
8 | 1.0
8 | Watts
mW/°C | | Operating and Storage Junction Temperature Range | T _J , T _{STG} | -55 to 150 | -55 to 150 | °c | #### thermal characteristics | Thermal Resistance, Junction to Ambient ⁽¹⁾ | $R_{ heta JA}$ | 125 | 125 | °C/W | |--|----------------|-----|-----|------| | Maximum Lead Temperature for Soldering
Purposes: 1/8" from Case for 5 Seconds | TL | 300 | 300 | °C | ⁽¹⁾ Device mounted to vertical pc board in free air with drain lead soldered to 0.20 in² minimum copper run area. (2) Repetitive Rating: Pulse width limited by max. junction temperature. # electrical characteristics ($T_A = 25^{\circ}C$) (unless otherwise specified) | CHARACTERISTIC | | SYMBOL | MIN | TYP | MAX | UNIT | |---|--------------------|--------|-----------|-----|-------------|-------| | ff characteristics | | | | | | | | Drain-Source Breakdown Voltage
(V _{GS} = 0V, I _D = 250 μA) | IRFD122
IRFD123 | BVDSS | 100
60 | | | Volts | | Zero Gate Voltage Drain Current
(V _{DS} = Max Rating, V _{GS} = 0V, T _A = 25°C)
(V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _A = 125°C) | | IDSS | | | 250
1000 | μΑ | | Gate-Source Leakage Current
(V _{GS} = ±20V) | | lass | | | ±500 | nA | ### on characteristics* | Gate Threshold Voltage
(V _{DS} = V _{GS} , I _D = 250 μA) | T _A = 25°C | V _{GS(TH)} | 2.0 | WARRIED | 4.0 | Volts | |---|-----------------------|---------------------|-----|----------------|------|-------| | On-State Drain Current
(V _{GS} = 10V, V _{DS} = 10V) | | I _{D(ON)} | 1.1 | | | Α | | Static Drain-Source On-State Resistance (V _{GS} = 10V, I _D = 0.6A) | | R _{DS(ON)} | _ | 0.30 | 0.40 | Ohms | | Forward Transconductance
(V _{DS} = 10V, I _D = 0.6A) | | 9fs | .63 | 1.0 | - | mhos | ## dynamic characteristics | Input Capacitance | V _{GS} = 0V | C _{iss} | _ | 410 | 600 | рF | |------------------------------|-----------------------|------------------|---|-----|-----|----| | Output Capacitance | V _{DS} = 25V | Coss | _ | 160 | 400 | pF | | Reverse Transfer Capacitance | f = 1 MHz | C _{rss} | | 40 | 100 | pF | ## switching characteristics* | Turn-on Delay Time | V _{DS} = 30V | t _{d(on)} | _ | 15 | | ns | |---------------------|--|---------------------|---|----|---|----| | Rise Time | I _D = 0.6A, V _{GS} = 15V | t _r | | 30 | | ns | | Turn-off Delay Time | R_{GEN} = 50 Ω , R_{GS} = 12.5 Ω | t _{d(off)} | _ | 25 | | ns | | Fall Time | (R _{GS (EQUIV.)} = 10Ω) | t _f | | 10 | _ | ns | # source-drain diode ratings and characteristics* | Continuous Source Current | Is | _ | _ | 1.1 | Α | |--|------------------------------------|---|-----------|-----|----------| | Pulsed Source Current | Ism | _ | | 4.4 | Α | | Diode Forward Voltage I _S = 1.1A (T _A = 25°C, V _{GS} = 0V) | V _{SD} | | 0.6 | 2.3 | Volts | | Reverse Recovery Time (I _S = 1.3A, di _S /dt = 100A/ μ s, T _A = 125°C) | t _{rr}
Q _{RR} | _ | 75
0.7 | | ns
μC | *Pulse Test: Pulse width $\leq 300 \,\mu$ s, duty cycle $\leq 2\%$ **MAXIMUM SAFE OPERATING AREA** TYPICAL NORMALIZED $R_{DS[ON]}$ AND $V_{GS[TH]}$ VS. TEMP.