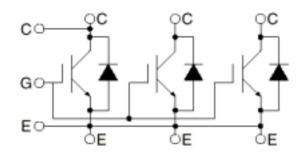
(Target Spec.)

TOSHIBA GTR MODULE

MG1200FXF1US53


S ILICON N-CHANNEL IGBT

HIGH POWER SWITCHING APPLICATIONS.
MOTOR CONTROL APPLICATIONS.

Features •High Input Impedance

- •Enhancement Mode
- •Electrodes are Isolated from Case

EQUIVALENT CIRCUIT

MAXIMUM RATINGS (Ta=25degC)

Characteristic		Symbol	Rating	Unit	
Collector-Emitter Voltage		VCES	3300	V	
Gate-Emitter Voltage		VGES	+/-20	V	
	RMS	IC	1200 (Note.1)	Α	
Collector Current	Peak Turn off current	ICP	2400 (Note.2)	Α	
Peak 1 cycle surge Co	urrent 10ms(half sine)	IFSM	10	kA	
Collector Power Dissipation		Pc	4000	W	
Operating Junction Temperature		Tj	-40125	degC	
Storage Temperature Range		T _{stg}	-40125	degC	
Isolation Voltage		V _{Isol}	6000 (AC 1MIN.)	V	
Screw Torque	Terminal:M4/M8	-	2/7	Nm	
	Mounting		4		

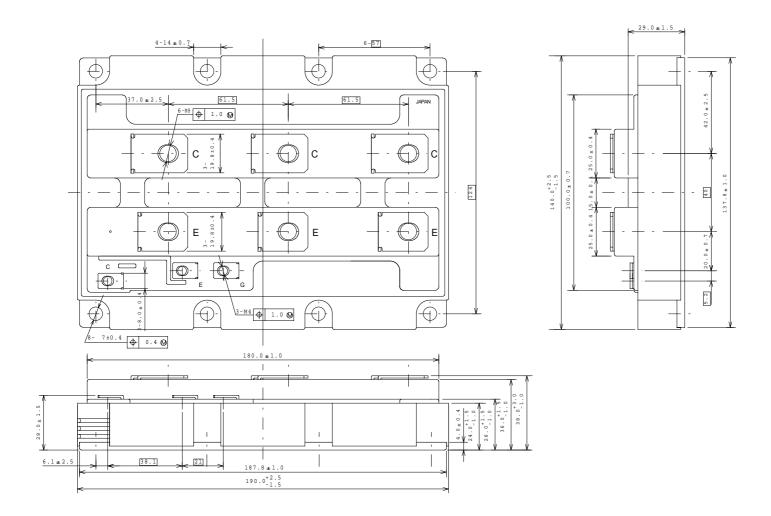
Note.1 50Hz(Half Sine), Tc=75degC, Switching Loss is not contained.

Note.2 Vcc=<2200V, Vcp=<2700V, Ls=160nH, RG=9.10hm, VGE=+/-15V, Tj=<125 degC

(Target Spec.)

ELECTRICAL CHARACTERISTICS(Tvj=125 degC)

Characteristic		Symbol	Test condition	Min.	Тур.	Max.	Unit
Gate leakage current		IGES	V _{GE} =+/-20V, V _{CE} =0V	-	-	+/-50	nA
Collector cut-off current		ICES	VCE=3300V, VGE=0V	-	75	100	mA
Gate-Emitter cut-off voltage		VGE(off)	V _{CE} =5V, I _C =1.2A	-	7.2	-	V
Collector-Emitter		VCE(sat)	IC=1200A,VGE=15V	-	4.2	4.5	V
saturation voltage							
Input capacitance		C _{ies}	VCE=10V, VGE=0V, f=100kHz	-	230	-	nF
	Rise time	t _r	V _{CC} =1800V, I _C =1200A,	-	0.3	-	μs
	Turn-on time	ton	VGG=+/-15V,	-	0.8	-	μs
Switching			RG(on)/(off)=3.0/9.1Ω				
time	Fall time	tf	(di _C /dt(on)<>4500A/μs)	-	1.2	-	μs
			(Inductive Load,				
	Turn-off time	^t off	Ls=160nH)	-	4.9	-	μs
Forward voltage of Diode		VF	I _F =1200A,V _{GE} =0V	-	3.1	3.5	V
Reverse recovery charge		Qrr	I _F =1200A,V _{GG} =-15V, di _F /dt<>-4500A/μs,	-	1000	-	μС
Peak reverse recovery current		Irr	V _{CC} =1800V	-	1400	-	Α
	turn-on loss	Eon	V _{CC} =1800V, I _C =1200A, V _{GG} =+/-15V,	-	2.0	-	J
Switching dissipation	turn-off loss	Eoff	RG(on)/(off)=3.0/9.1Ω (di _C /dt(on)<>4500A/μs) (Inductive Load, Ls=160nH)	-	1.7	-	J
	Diode Reverse recovery loss	Edsw	I _F =1200A,V _{GG} =-15V, di _F /dt□4500A/μs, V _{CC} =1800V	-	1.3	-	J


Thermal Resistance(Tc=25 degC)

Thermal Resistance	R _{th(j-C)}	Transistor(IGBT) Stage	-	-	8.0	degC /kW
		Diode Stage	-	1	16.0	
	Rth(C-f)	per Module(Note.3)	-	6.0	-	

Note.3:Toshiba Silicone's YG6260 heat radiation grease is recommended for use with semiconductor devices. Apply a thin , even(100-to-200-um) coating of grease.

(Target Spec.)

Outline Unit:mm

(Target Spec.)

RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA product could cause loss of human life, bodily injury or damage to property.

 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handing Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba products listed in this document shall be made at the customer's own risk.
- The information contained here in in presented only as a guide for the applications of our products.

 No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.