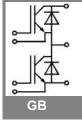
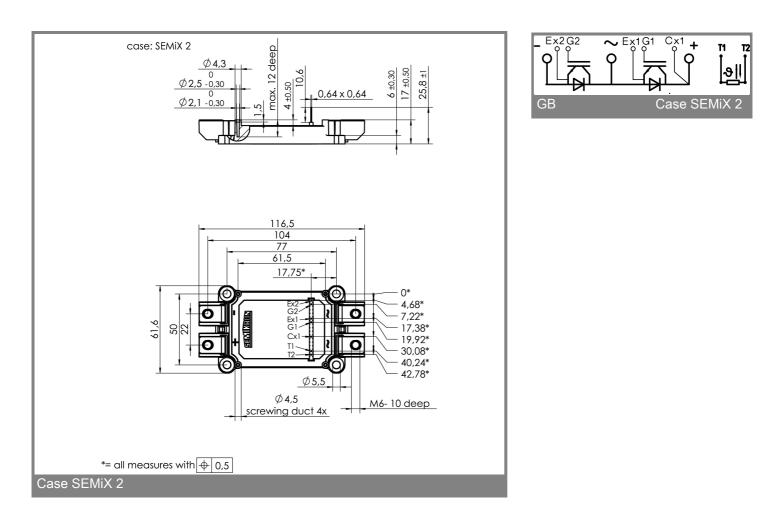

SEMiX 202GB128D

SEMiXTM 2

SPT IGBT Modules

SEMiX 202GB128D
Target Data
Features
 Homogeneous Si
 SPT = Soft-Punch-Through
technology
 V_{CE(sat)} with positive temperature coefficient
High chart aircuit canability


• High short circuit capability


Typical Applications

- AC inverter drives
- UPS
- Electronic Welders f_{sw} up to 20 kHz

Absolute Maximum Ratings		T _{case} = 25°C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V _{CES}		1200	V				
I _C	T _c = 25 (80) °C	190 (135)	А				
ICRM	T _c = 25 (80) °C, t _p = 1 ms	380 (270)	А				
V _{GES}		± 20	V				
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	4000	V				
Inverse diode							
I _F = - I _C	T _c = 25 (80) °C	150 (100)	А				
I _{FRM}	T _c = 25 (80) °C, t _p = 1 ms	380 (270)	А				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$		А				

Characte	ristics T _{ca}	_{se} = 25°C,	$_{\rm e}$ = 25°C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
V _{GE(th)} I _{CES}	$V_{GE} = V_{CE}, I_C = 4 \text{ mA}$ $V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) \text{ °C}$ $T_j = 25 (125) \text{ °C}$	4,5	5,5 1 (0,9)	6,5 0,3 1,15 (1,05)	V mA V		
V _{CE(TO)} r _{CE}	$V_{GF} = 15 V, T_i = 25 (125) °C$		9 (12)	12 (15)	mΩ		
V _{CE(sat)}	$I_{c} = 100 \text{ A}, V_{GE} = 15 \text{ V},$ $T_{j} = 25 (125) ^{\circ}\text{C}, \text{ chip level}$		1,9 (2,1)	. ,	V		
C _{ies} C _{oes} C _{res} L _{CE}	under following conditions V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		9 18		nF nF nF nH		
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125) °C				mΩ		
t _{d(on)} /t _r t _{d(off)} /t _f	$V_{CC} = 600 \text{ V}, \text{ I}_{C} = 100 \text{ A}$ $V_{GE} = \pm 15 \text{ V}$				ns ns		
$E_{on} \left(E_{off}\right)$	$R_{Gon} = R_{Goff} = \Omega, T_j = 125 \ ^{\circ}C$		8 (11)		mJ		
Inverse diode							
$V_{F} = V_{EC}$	I _F = 100 A; V _{GE} = 0 V; T _j = 25 (125) °C, chip level		2 (1,8)	2,5 (2,3)	V		
V _(TO) r _T I _{RRM} Q _{rr} E _{rr}	$T_{j} = 25 (125) ^{\circ}C$ $T_{j} = 25 (125) ^{\circ}C$ $I_{F} = 100 \text{ A}; T_{j} = 25 (125) ^{\circ}C$ $di/dt = A/\mu s$ $V_{GF} = 0 \text{ V}$		1,1 9	1,2 13	V mΩ A μC mJ		
Thermal characteristics							
R _{th(j-c)} R _{th(j-c)D} R _{th(j-c)FD}	per IGBT per Inverse Diode per FWD per module		0,045	0,165 0,3	K/W K/W K/W		
R _{th(c-s)}			0,040		10,00		
R ₂₅	ture sensor $T_c = 25 °C$		5 ±5%		kΩ		
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]; T[K]; B$		3420		K		
Mechanic					1		
M _s /M _t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm		
w			236		g		

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.