
SEMIX 252GB176HD

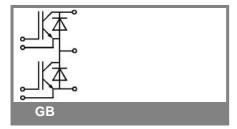
SEMIXTM 2

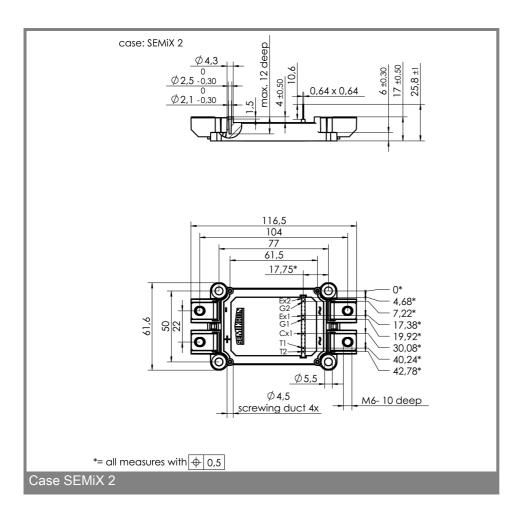
Trench IGBT Modules

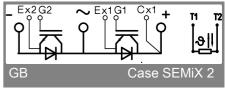
SEMIX 252GB176HD

Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Absolute Maximum Ratings		T _{case} = 25°C, unless otherv	T _{case} = 25°C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT			•					
V_{CES}		1700	V					
V _{CES}	T _c = 25 (80) °C	260 (170)	Α					
I _{CRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	520 (340)	Α					
V_{GES}		± 20	V					
T_{vj}^{-1} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V_{isol}	AC, 1 min.	4000	V					
Inverse diode								
$I_F = -I_C$	T _c = 25 (80) °C	210 (140)	Α					
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	520 (340)	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$		Α					

Characte	ristics T	= 25°C	unless of	herwise sp	pecified
Symbol	Conditions	min.			Units
IGBT	Conditions	IIIIII.	typ.	max.	Ullits
_	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$	5,2	5,8	6,4	V
$V_{GE(th)}$ I_{CES}	$V_{GE} = V_{CE}, V_{CE} = V_{CES}, T_j = 25 (125) °C$	3,2	5,0	1,2	mA
V _{CE(TO)}	$T_i = 25 (125) ^{\circ}C$		1 (0,9)	1,2 (1,1)	V
r _{CE}	V _{GE} = 15 V, T _i = 25 (125) °C		6,7 (10,3)		mΩ
V _{CE(sat)}	I _C = 150 A, V _{GF} = 15 V,		2 (2,45)	2,45 (2,9)	V
OL(out)	T _i = 25 (125) °C, chip level				
C _{ies}	under following conditions		11,5		nF
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		0,6		nF
C _{res}			0,5		nF
L _{CE}			18		nH
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125)				mΩ
	°C				
$t_{d(on)}/t_r$	V _{CC} = 1200 V, I _C = 150 A				ns
$t_{d(off)}/t_{f}$	V _{GE} = ± 15 V				ns
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = \Omega$, $T_j = 125 ^{\circ}C$		100 (50)		mJ
Inverse d					_
$V_F = V_{EC}$	$I_F = 150 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125) ^{\circ}\text{C},$ chip level		1,7 (1,7)	1,9 (1,9)	V
$V_{(TO)}$	T _i = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V
r _T	T _j = 25 (125) °C		4 (5,3)	4 (5,3)	mΩ
I _{RRM}	$I_F = 150 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$				A
Q _{rr}	$di/dt = A/\mu s$				μC
E _{rr}	V _{GE} = 0 V				mJ
	characteristics				
$R_{th(j-c)}$	per IGBT			0,11	K/W
$R_{th(j-c)D}$	per Inverse Diode			0,25	K/W K/W
R _{th(j-c)FD}	per FWD		0.045		-
R _{th(c-s)}	per module		0,045		K/W
	ure sensor	ı	- · -0/		1.0
R ₂₅	T _c = 25 °C		5 ±5%		kΩ
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K
Mechanic	•	1			1
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm
W			236		g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON