
## SEMIX 302GB126HD

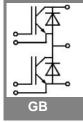


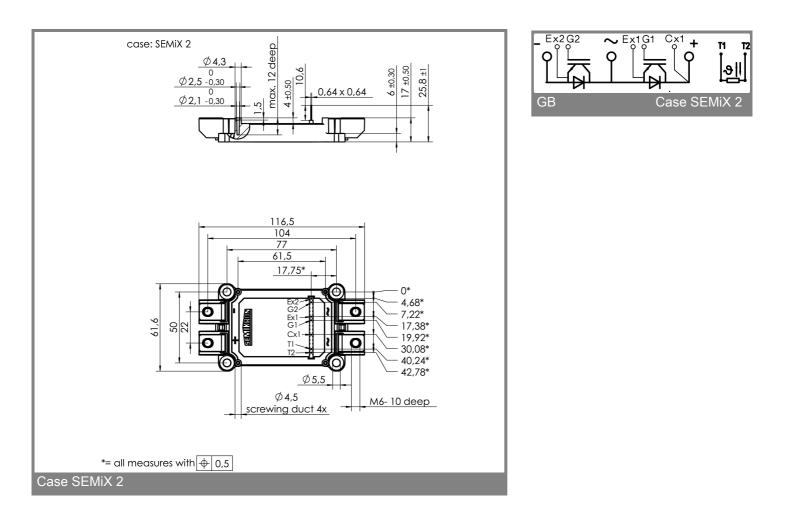
SEMiX<sup>TM</sup> 2

## **Trench IGBT Modules**

| SEMiX 302GB126HD | ) |
|------------------|---|
|------------------|---|

## Features


- Homogeneous Si
- Trench = Trenchgate technology
- V<sub>CE(sat)</sub> with positive temperature coefficient
- High short circuit capability


## **Typical Applications**

- AC inverter drives
- UPS
- Electronic welders

| Absolute                              | Maximum Ratings                                      | T <sub>case</sub> = 25°C, unless oth | T <sub>case</sub> = 25°C, unless otherwise specified |  |  |  |  |  |  |
|---------------------------------------|------------------------------------------------------|--------------------------------------|------------------------------------------------------|--|--|--|--|--|--|
| Symbol                                | Conditions                                           | Values                               | Units                                                |  |  |  |  |  |  |
| IGBT                                  |                                                      |                                      |                                                      |  |  |  |  |  |  |
| V <sub>CES</sub>                      |                                                      | 1200                                 | V                                                    |  |  |  |  |  |  |
| I <sub>C</sub>                        | T <sub>c</sub> = 25 (80) °C                          | 300 (210)                            | А                                                    |  |  |  |  |  |  |
| ICRM                                  | $T_{c} = 25 (80) \text{°C}, t_{p} = 1 \text{ ms}$    | 600 (420)                            | А                                                    |  |  |  |  |  |  |
| V <sub>GES</sub>                      | - r                                                  | ± 20                                 | V                                                    |  |  |  |  |  |  |
| T <sub>vj</sub> , (T <sub>stg</sub> ) | $T_{OPERATION} \leq T_{stg}$                         | - 40 + 150 (12                       | 5) °C                                                |  |  |  |  |  |  |
| V <sub>isol</sub>                     | AC, 1 min.                                           | 4000                                 | V                                                    |  |  |  |  |  |  |
| Inverse diode                         |                                                      |                                      |                                                      |  |  |  |  |  |  |
| $I_F = -I_C$                          | T <sub>c</sub> = 25 (80) °C                          | 250 (170)                            | A                                                    |  |  |  |  |  |  |
| I <sub>FRM</sub>                      | T <sub>c</sub> = 25 (80) °C, t <sub>p</sub> = 1 ms   | 600 (420)                            | A                                                    |  |  |  |  |  |  |
| I <sub>FSM</sub>                      | t <sub>p</sub> = 10 ms; sin.; T <sub>j</sub> = 25 °C |                                      | А                                                    |  |  |  |  |  |  |

| Character                           | ristics T <sub>ca</sub>                                                                                                                             | use = 25°C, unless otherwise specified |           |             |         |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|-------------|---------|--|--|
| Symbol                              | Conditions                                                                                                                                          | min.                                   | typ.      | max.        | Units   |  |  |
| IGBT                                |                                                                                                                                                     |                                        |           |             |         |  |  |
| $V_{GE(th)}$ I <sub>CES</sub>       | V <sub>GE</sub> = V <sub>CE</sub> , I <sub>C</sub> = 8 mA<br>V <sub>GE</sub> = 0, V <sub>CE</sub> = V <sub>CES</sub> , T <sub>i</sub> = 25 (125) °C | 5                                      | 5,8       | 6,5<br>1,3  | V<br>mA |  |  |
| V <sub>CE(TO)</sub>                 | T <sub>j</sub> = 25 (125) °C                                                                                                                        |                                        | 1 (0,9)   |             | V       |  |  |
| r <sub>CE</sub>                     | V <sub>GE</sub> = 15 V, T <sub>j</sub> = 25 (125) °C                                                                                                |                                        | 3,5 (5,5) | 4,8 (6,8)   | mΩ      |  |  |
| V <sub>CE(sat)</sub>                | I <sub>C</sub> = 200 A, V <sub>GE</sub> = 15 V,<br>T <sub>i</sub> = 25 (125) °C, chip level                                                         |                                        | 1,7 (2)   | 2,15 (2,45) | V       |  |  |
| C <sub>ies</sub>                    | under following conditions                                                                                                                          |                                        | 14,4      |             | nF      |  |  |
| C <sub>oes</sub>                    | V <sub>GE</sub> = 0, V <sub>CE</sub> = 25 V, f = 1 MHz                                                                                              |                                        | 0,8       |             | nF      |  |  |
| C <sub>res</sub>                    |                                                                                                                                                     |                                        | 0,7       |             | nF      |  |  |
| L <sub>CE</sub>                     |                                                                                                                                                     |                                        | 18        |             | nH      |  |  |
| R <sub>CC'+EE'</sub>                | resistance, terminal-chip, T <sub>c</sub> = 25 (125)<br>°C                                                                                          |                                        |           |             | mΩ      |  |  |
| t <sub>d(on)</sub> /t <sub>r</sub>  | V <sub>CC</sub> = 600 V, I <sub>C</sub> = 200 A                                                                                                     |                                        |           |             | ns      |  |  |
| t <sub>d(off)</sub> /t <sub>f</sub> | $V_{GE} = \pm 15 V$                                                                                                                                 |                                        |           |             | ns      |  |  |
| E <sub>on</sub> (E <sub>off</sub> ) | $R_{Gon} = R_{Goff} = \Omega, T_j = 125 \text{ °C}$                                                                                                 |                                        | 17 (33)   |             | mJ      |  |  |
| Inverse d                           | iode                                                                                                                                                |                                        |           |             |         |  |  |
| $V_{F} = V_{EC}$                    | I <sub>F</sub> = 200 A; V <sub>GE</sub> = 0 V; T <sub>j</sub> = 25 (125) °C,<br>chip level                                                          |                                        | 1,6 (1,6) | 1,8 (1,8)   | V       |  |  |
| V <sub>(TO)</sub>                   | T <sub>j</sub> = 25 (125) °C                                                                                                                        |                                        | 1 (0,8)   | 1,1 (0,9)   | V       |  |  |
| r <sub>T</sub>                      | $T_{j} = 25 (125) \ ^{\circ}C$                                                                                                                      |                                        | 3 (4)     | 3,5 (4,5)   | mΩ      |  |  |
| IRRM                                | $I_F = 200 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$                                                                                              |                                        |           |             | A       |  |  |
| Q <sub>rr</sub>                     | di/dt = A/µs                                                                                                                                        |                                        |           |             | μC      |  |  |
| E <sub>rr</sub>                     | V <sub>GE</sub> = 0 V                                                                                                                               |                                        |           |             | mJ      |  |  |
|                                     | characteristics                                                                                                                                     |                                        |           |             |         |  |  |
| R <sub>th(j-c)</sub>                | per IGBT                                                                                                                                            |                                        |           | 0,125       | K/W     |  |  |
| R <sub>th(j-c)D</sub>               | per Inverse Diode                                                                                                                                   |                                        |           | 0,25        | K/W     |  |  |
| R <sub>th(j-c)FD</sub>              | per FWD                                                                                                                                             |                                        |           |             | K/W     |  |  |
| R <sub>th(c-s)</sub>                | per module                                                                                                                                          |                                        | 0,045     |             | K/W     |  |  |
|                                     | ure sensor                                                                                                                                          |                                        |           |             |         |  |  |
| R <sub>25</sub>                     | T <sub>c</sub> = 25 °C                                                                                                                              |                                        | 5 ±5%     |             | kΩ      |  |  |
| B <sub>25/85</sub>                  | $R_2 = R_1 exp[B(1/T_2 - 1/T_1)]; T[K];B$                                                                                                           |                                        | 3420      |             | К       |  |  |
| Mechanical data                     |                                                                                                                                                     |                                        |           |             |         |  |  |
| M <sub>s</sub> /M <sub>t</sub>      | to heatsink (M5) / for terminals (M6)                                                                                                               | 3/2,5                                  |           | 5 /5        | Nm      |  |  |
| w                                   |                                                                                                                                                     |                                        | 236       |             | g       |  |  |





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.