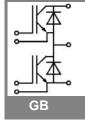
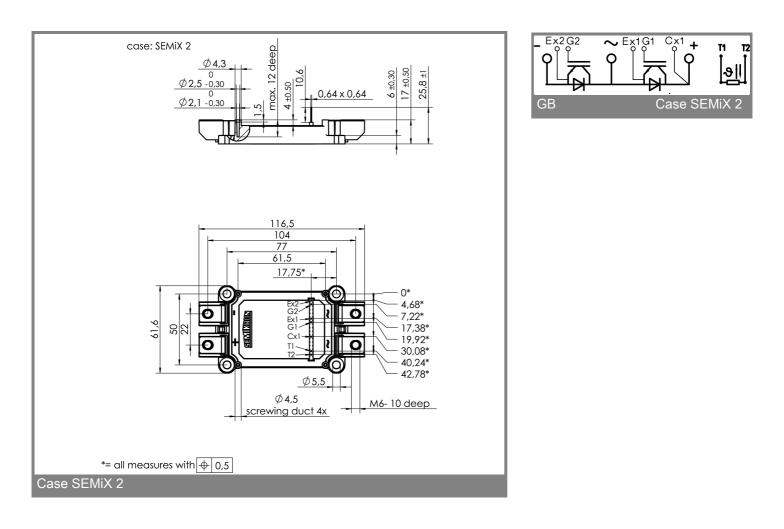

SEMiX 302GB128D

SEMiXTM 2


SPT IGBT Modules


SEMiX 302GB128D
Target Data
Features
 Homogeneous Si SPT = Soft-Punch-Through technology V_{CE(sat)} with positive temperature coefficient High short circuit capability
Typical ApplicationsAC inverter drives

- UPS
- Electronic Welders

Absolute Maximum Ratings		T _{case}	T _{case} = 25°C, unless otherwise specified					
Symbol	Conditions		Values					
IGBT								
V _{CES}			1200	V				
I _C	T _c = 25 (80) °C		310 (220)	А				
ICRM	T _c = 25 (80) °C, t _p = 1 ms		620 (440)	А				
V _{GES}	- P		± 20	V				
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$		- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.		4000	V				
Inverse diode								
I _F = - I _C	T _c = 25 (80) °C		200 (130)	А				
I _{FRM}	T _c = 25 (80) °C, t _p = 1 ms		620 (440)	А				
I _{FSM}	t _p = 10 ms; sin.; T _j = 25 °C			А				

Characte	Characteristics T _{case} = 25°C, unless otherwise specifie						
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
V _{GE(th)} I _{CES}	$V_{GE} = V_{CE}, I_C = 6 \text{ mA}$ $V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) ^{\circ}C$	4,5	5,5	6,5 0,3	V mA		
V _{CE(TO)}	$T_j = 25 (125) °C$		1 (0,9)	1,15 (1,05)	V		
r _{CE}	$V_{GE} = 15 \text{ V}, \text{ T}_{j} = 25 (125) \text{ °C}$		6 (8)	8 (10)	mΩ		
V _{CE(sat)}	$I_{C} = 150 \text{ A}, V_{GE} = 15 \text{ V},$ T _j = 25 (125) °C, chip level		1,9 (2,1)	2,35 (2,55)	V		
C _{ies}	under following conditions		13,5		nF		
C _{oes}	$V_{GE} = 0, V_{CE} = 25 V, f = 1 MHz$				nF		
C _{res} L _{CE}			18		nF nH		
CE R _{CC'+EE'}	resistance, terminal-chip, $T_c = 25$ (125)		10		mΩ		
' CC'+EE'	°C				11132		
t _{d(on)} /t _r t _{d(off)} /t _f	V _{CC} = 600 V, I _C = 150 A V _{GF} = ± 15 V				ns ns		
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = \Omega, T_j = 125 \text{ °C}$		12 (17)		mJ		
Inverse diode							
$V_F = V_{EC}$	I _F = 150 A; V _{GE} = 0 V; T _j = 25 (125) °C, chip level		2 (1,8)	2,5 (2,3)	V		
V _(TO)	T _j = 25 (125) °C		1,1	1,2	V		
r _T	$T_{j} = 25 (125) °C$		6	8,7	mΩ		
I _{RRM}	$I_F = 150 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$				A		
Q _{rr}	$di/dt = A/\mu s$				μC		
E _{rr}	V _{GE} = 0 V				mJ		
	characteristics	i		0,095	K/W		
R _{th(j-c)} R	per Inverse Diode			0,095	K/W		
R _{th(j-c)D} R _{th(j-c)FD}	per FWD			0,20	K/W		
R _{th(c-s)}	per module		0,045		K/W		
Temperature sensor							
R ₂₅	$T_c = 25 \degree C$		5 ±5%		kΩ		
B _{25/85}	$R_2 = R_1 exp[B(1/T_2 - 1/T_1)]; T[K];B$		3420		К		
Mechanical data							
M _s /M _t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm		
w			236		g		

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.