
SEMIX 302GB176HD

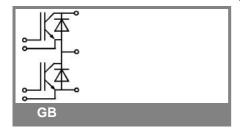
SEMiXTM 2

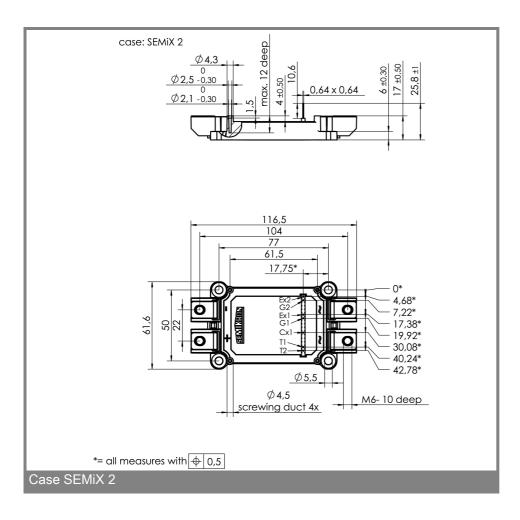
Trench IGBT Modules

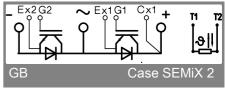
SEMIX 302GB176HD

Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Absolute	Maximum Ratings	T _{case} = 25°C, unless otherv	T _{case} = 25°C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT			•					
V_{CES}		1700	V					
V _{CES}	T _c = 25 (80) °C	290 (210)	Α					
I _{CRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	580 (420)	Α					
V_{GES}		± 20	V					
T_{vj}^{-1} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V_{isol}	AC, 1 min.	4000	V					
Inverse diode								
$I_F = -I_C$	T _c = 25 (80) °C	300 (200)	Α					
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	580 (420)	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$		Α					

Characte	ristics T _{ca}	_{se} = 25°C,	, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT		•			•	
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$	5,2	5,8	6,4	V	
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25 (125) °C$			1,6	mA	
$V_{CE(TO)}$	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	1,2 (1,1)	V	
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		5 (7,8)	6,3 (9)	mΩ	
V _{CE(sat)}	$I_C = 200 \text{ A}, V_{GE} = 15 \text{ V},$		2 (2,45)	2,45 (2,9)	V	
	T_{j} = 25 (125) °C, chip level					
C _{ies}	under following conditions		14,2		nF	
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		0,7		nF	
C _{res}			0,6		nF	
L _{CE}			18		nH	
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125)				mΩ	
	°C					
$t_{d(on)}/t_r$	$V_{CC} = 1200 \text{ V}, I_{C} = 200 \text{ A}$				ns	
$t_{d(off)}/t_{f}$	$V_{GE} = \pm 15 V$				ns	
$E_{on} (E_{off})$	$R_{Gon} = R_{Goff} = \Omega$, $T_j = 125$ °C		130 (70)		mJ	
Inverse d						
$V_F = V_{EC}$	I_F = 200 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		1,7 (1,7)	1,9 (1,9)	V	
$V_{(TO)}$	T _j = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V	
r _T	$T_j = 25 (125) ^{\circ}C$		3 (4)	3 (4)	mΩ	
I _{RRM}	I _F = 200 A; T _j = 25 (125) °C				A	
Q_{rr}	di/dt = A/µs				μC	
E _{rr}	V _{GE} = 0 V				mJ	
	characteristics					
$R_{th(j-c)}$	per IGBT			0,095	K/W	
$R_{th(j-c)D}$	per Inverse Diode			0,17	K/W	
$R_{th(j-c)FD}$	per FWD				K/W	
R _{th(c-s)}	per module		0,045		K/W	
Temperat	ure sensor					
R ₂₅	T _c = 25 °C		5 ±5%		kΩ	
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K	
Mechanic	al data					
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm	
W			236		g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON