
SEMIX 352GB128D

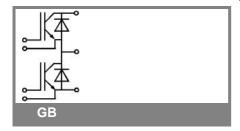
SEMIXTM 2

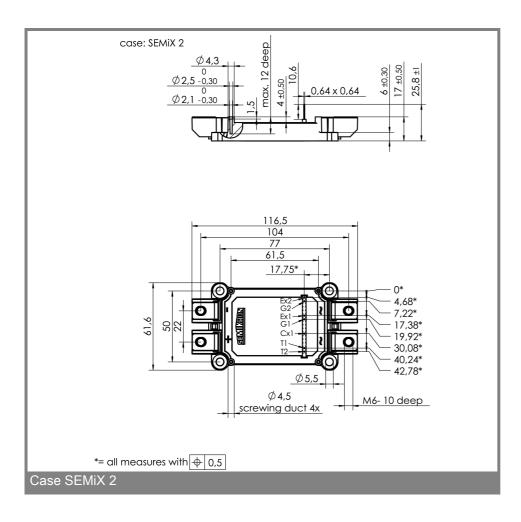
SPT IGBT Modules

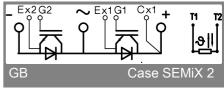
SEMIX 352GB128D

Target Data

Features


- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- · Electronic welders

Absolute	Maximum Ratings	T _{case} = 25°C, unless otherwise s	case = 25°C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
I _C	$T_c = 25 (80) ^{\circ}C$	370 (260)	Α					
I _{CRM}	$T_c = 25 (80) ^{\circ}C, t_p = 1 \text{ ms}$	740 (520)	Α					
V_{GES}	T T	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
$I_F = -I_C$	T _c = 25 (80) °C	270 (180)	Α					
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	740 (520)	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$		А					

Characte	Characteristics T _{case} = 25°C, unless otherwise speci					
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$	4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$			0,3	mA	
$V_{CE(TO)}$	T _j = 25 (125) °C		1 (0,9)	1,15 (1,05)	V	
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		4,5 (6)	6 (7,5)	mΩ	
V _{CE(sat)}	$I_C = 200 \text{ A}, V_{GE} = 15 \text{ V},$		1,9 (2,1)	2,35 (2,55)	V	
	T _j = 25 (125) °C, chip level					
C _{ies}	under following conditions		18		nF	
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$				nF	
C _{res}					nF	
L _{CE}			18		nH	
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125)				mΩ	
	°C					
$t_{d(on)}/t_r$	$V_{CC} = 600 \text{ V}, I_{C} = 200 \text{ A}$				ns	
$t_{d(off)}/t_{f}$	V _{GE} = ± 15 V				ns	
$E_{on} (E_{off})$	$R_{Gon} = R_{Goff} = \Omega$, $T_j = 125$ °C		15 (22)		mJ	
Inverse d						
$V_F = V_{EC}$	I_F = 200 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		2 (1,8)	2,5 (2,3)	V	
$V_{(TO)}$	T _j = 25 (125) °C		1,1	1,2	V	
r _T	T _j = 25 (125) °C		4,5	6,5	mΩ	
I _{RRM}	$I_F = 200 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$				Α	
Q_{rr}	di/dt = A/µs				μC	
E _{rr}	V _{GE} = 0 V				mJ	
	characteristics					
$R_{th(j-c)}$	per IGBT			0,085	K/W	
$R_{th(j-c)D}$	per Inverse Diode			0,18	K/W	
$R_{th(j-c)FD}$	per FWD				K/W	
$R_{th(c-s)}$	per module		0,045		K/W	
Temperat	ure sensor					
R ₂₅	T _c = 25 °C		5 ±5%		kΩ	
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K	
Mechanic	al data					
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm	
w			236		g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON