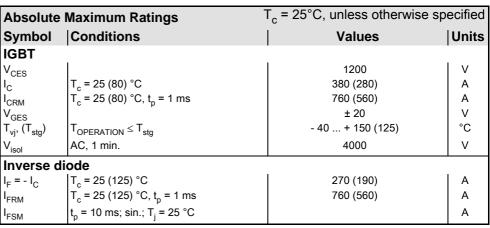
SEMiX 353GB126HDs

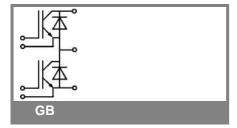
SEMiXTM 3s

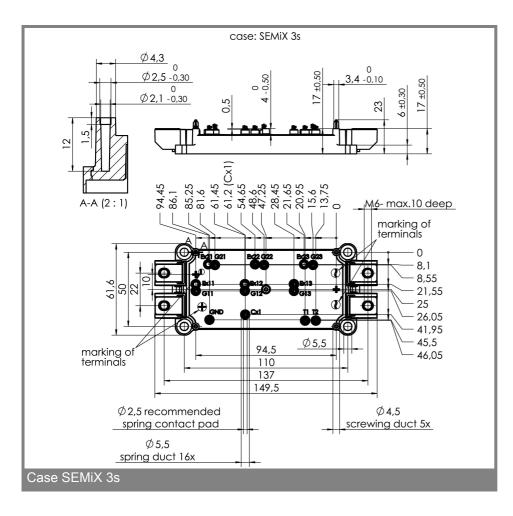
Trench IGBT Modules

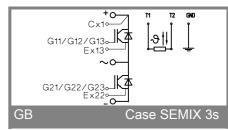
SEMiX 353GB126HDs


Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Characteristics $T_c = 25$ °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units
IGBT	IV V I 0	l =	5 0	0.5	1 1
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 9 \text{ mA}$	5	5,8	6,5	V
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25 (125) °C$ $T_i = 25 (125) °C$		1 (0,9)	1,5 1,2 (1,1)	mA V
$V_{CE(TO)}$ r_{CE}	V _{GE} = 15 V, T _i = 25 (125) °C		0,3 (4,9)	4 (5,8)	mΩ
V _{CE(sat)}	$I_{\rm C} = 225 \text{ A}, V_{\rm GF} = 15 \text{ V},$		1,7 (2)	, ,	V
*CE(sat)	$T_i = 25 (125) ^{\circ}C$, chip level		.,. (=)	_, (_, ,)	
C _{ies}	under following conditions		16		nF
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		0,85		nF
C_{res}			0,72		nF
L _{CE}			20		nH
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125)		0,8 (1,2)		mΩ
	°C				
$t_{d(on)}/t_r$	V _{CC} = 600 V, I _C = 225 A				ns
$t_{d(off)}/t_{f}$	V _{GE} = ± 15 V				ns
$E_{on} (E_{off})$	$R_{Gon} = R_{Goff} = 4 \Omega$, $T_j = 125 °C$		30 (35)		mJ
Inverse d					
$V_F = V_{EC}$	I_F = 225 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		1,6 (1,6)	1,8 (1,8)	V
V _(TO)	T _j = 25 (125) °C		1 (0,8)	1,1 (0,9)	V
r _T	T _j = 25 (125) °C		2,7 (3,6)	3,1 (4)	mΩ
I _{RRM}	$I_F = 225 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$				A
Q _{rr}	di/dt = A/µs				μC
E _{rr}	$V_{GE} = 0 V$				mJ
	characteristics				•
$R_{th(j-c)}$	per IGBT			0,095	K/W
R _{th(j-c)D}	per Inverse Diode			0,225	K/W
R _{th(j-c)FD}	per FWD				K/W
R _{th(c-s)}	per module		0,04		K/W
	ture sensor	Í			1
R ₂₅	T _c = 25 °C		5 ±5%		kΩ
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K
Mechanic	•	è			
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm
w			289		g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON