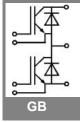
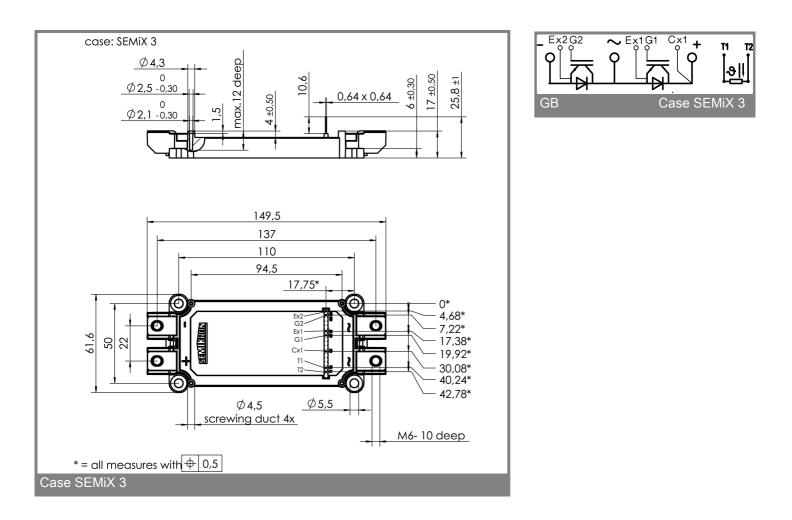
SEMIX 353GB176HD

Trench IGBT Modules

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability


Typical Applications

- AC inverter drives
- UPS
- Electronic welders

Absolute	Maximum Ratings	T _c = 25°C, unless otherwise	$T_c = 25^{\circ}C$, unless otherwise specified						
Symbol	Conditions	Values	Units						
IGBT									
V _{CES}		1700	V						
I _C	T _c = 25 (80) °C	380 (270)	Α						
I _{CRM}	T _c = 25 (80) °C, t _p = 1 ms	760 (540)	Α						
V _{GES}	- F	± 20	V						
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C						
V _{isol}	AC, 1 min.	4000	V						
Inverse diode									
I _F = - I _C	T _c = 25 (80) °C	310 (210)	Α						
I _{FRM}	T _c = 25 (80) °C, t _p = 1 ms	760 (540)	А						
I _{FSM}	t _p = 10 ms; sin.; T _j = 25 °C		А						

Characteristics		$T_c = 25^{\circ}C$, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 9 \text{ mA}$	5,2	5,8	6,4	V			
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$			1,8	mA			
V _{CE(TO)}	$T_j = 25 (125) °C$		1 (0,9)	1,2 (1,1)	V			
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		4,4 (6,9)	,	mΩ			
V _{CE(sat)}	I _C = 225 A, V _{GE} = 15 V,		2 (2,45)	2,45 (2,9)	V			
	T _j = 25 (125) °C, chip level							
C _{ies}	under following conditions		17,1		nF			
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		0,8		nF			
C _{res}			0,7		nF			
L _{CE}			20		nH			
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125)		0,8 (1,2)		mΩ			
	°C							
t _{d(on)} /t _r	$V_{CC} = 1200 \text{ V}, I_{C} = 225 \text{ A}$				ns			
t _{d(off)} /t _f	V _{GE} = ± 15 V				ns			
$E_{on} \left(E_{off} \right)$	$R_{Gon} = R_{Goff} = \Omega, T_j = 125 \text{ °C}$		140 (80)		mJ			
Inverse diode								
$V_F = V_{EC}$	I _F = 225 A; V _{GE} = 0 V; T _j = 25 (125) °C, chip level		1,7 (1,7)	1,9 (1,9)	V			
V _(TO)	T _j = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V			
r _T	$T_{j} = 25 (125) \ ^{\circ}C$		2,7 (3,6)	2,7 (3,6)	mΩ			
IRRM	I _F = 225 A; T _j = 25 (125) °C				A			
Q _{rr}	di/dt = A/µs				μC			
E _{rr}	V _{GE} = 0 V				mJ			
	characteristics							
R _{th(j-c)}	per IGBT			0,078	K/W			
R _{th(j-c)D}	per Inverse Diode			0,166	K/W			
R _{th(j-c)FD}	per FWD				K/W			
R _{th(c-s)}	per module		0,04		K/W			
	ture sensor							
R ₂₅	$T_c = 25 \ ^{\circ}C$		5 ±5%		kΩ			
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]; T[K];B$		3420		к			
Mechanical data								
M _s /M _t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm			
w			289		g			

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.