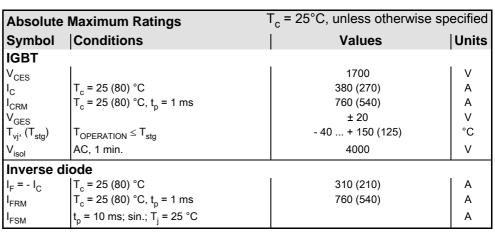
SEMiX 353GB176HDs

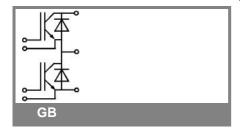
OEIMIX 03

Trench IGBT Modules

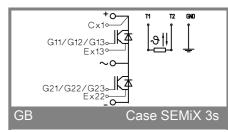
SEMiX 353GB176HDs


Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Characteristics		T _c = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT					
$V_{GE(th)}$ I_{CES} $V_{CE(TO)}$	$V_{GE} = V_{CE}, I_{C} = 9 \text{ mA}$ $V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) ^{\circ}C$ $T_{j} = 25 (125) ^{\circ}C$	5,2	5,8 1 (0,9)	6,4 1,8 1,2 (1,1)	V mA V
r _{CE}	V _{GE} = 15 V, T _i = 25 (125) °C		4,4 (6,9)	5,5 (8)	mΩ
V _{CE(sat)}	$I_C = 225 \text{ A}, V_{GE} = 15 \text{ V},$ $T_j = 25 (125) ^{\circ}\text{C}, \text{ chip level}$		2 (2,45)	2,45 (2,9)	V
C _{ies} C _{oes} C _{res} L _{CE}	under following conditions $V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		17,1 0,8 0,7 20		nF nF nF nH mΩ
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125) °C		0,8 (1,2)		11122
$t_{d(on)}/t_r$ $t_{d(off)}/t_f$	V _{CC} = 1200 V, I _C = 225 A V _{GE} = ± 15 V				ns ns
$E_{on} \left(E_{off} \right)$	$R_{Gon} = R_{Goff} = \Omega$, $T_j = 125 ^{\circ}C$		140 (80)		mJ
Inverse d	iode				
$V_F = V_{EC}$	I_F = 225 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		1,7 (1,7)	1,9 (1,9)	V
$egin{array}{l} V_{(TO)} \ r_{T} \ I_{RRM} \ Q_{rr} \end{array}$	$T_j = 25 (125) ^{\circ}C$ $T_j = 25 (125) ^{\circ}C$ $I_F = 225 A; T_j = 25 (125) ^{\circ}C$ $di/dt = A/\mu s$		1,1 (0,9) 2,7 (3,6)	1,3 (1,1) 2,7 (3,6)	V mΩ A μC
E _{rr}	V _{GE} = 0 V				mJ
$\begin{aligned} &\textbf{Thermal c}\\ &\textbf{R}_{\text{th(j-c)}}\\ &\textbf{R}_{\text{th(j-c)D}}\\ &\textbf{R}_{\text{th(j-c)FD}}\\ &\textbf{R}_{\text{th(c-s)}}\end{aligned}$	per IGBT per Inverse Diode per FWD per module		0,04	0,078 0,166	K/W K/W K/W
	ure sensor		-,-		1
R ₂₅ B _{25/85}	$T_c = 25 \text{ °C}$ $R_2 = R_1 \exp[B(1/T_2 - 1/T_1)] ; T[K]; B$		5 ±5% 3420		kΩ K
Mechanical data					
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5	289	5 /5	Nm g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON