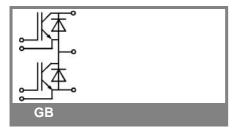
SEMIX 403GB128D

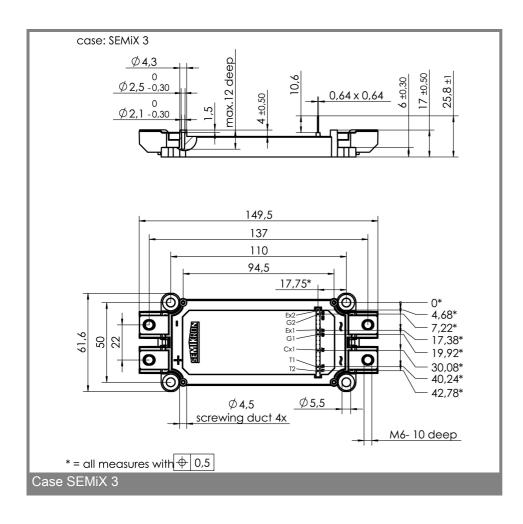
SPT IGBT Modules

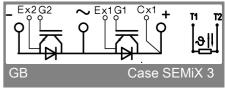
SEMIX 403GB128D

Target Data

Features


- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- Electronic welders f_{sw} up to 20 kHz

Absolute	Maximum Ratings	T _{case} = 25°C, unless otherwise	T _{case} = 25°C, unless otherwise specified						
Symbol	Conditions	Values	Units						
IGBT									
V_{CES}		1200	V						
V _{CES}	T _c = 25 (80) °C	420 (300)	Α						
I _{CRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	840 (600)	Α						
V_{GES}	r	± 20	V						
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C						
V_{isol}	AC, 1 min.	4000	V						
Inverse diode									
$I_F = -I_C$	T _c = 25 (80) °C	290 (200)	Α						
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	840 (600)	Α						
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$		Α						

Characteristics T _{case} = 25°C, unless otherwise specifie						
Symbol	Conditions	min.	typ.	max.	Units	
IGBT		•				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 9 \text{ mA}$	4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25$ (125) °C			0,3	mA	
$V_{CE(TO)}$	$T_j = 25 (125) ^{\circ}C$. ,	1,15 (1,05)	V	
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C			5,3 (6,7)	mΩ	
V _{CE(sat)}	I _C = 225 A, V _{GE} = 15 V,		1,9 (2,1)	2,35 (2,55)	V	
	T_j = 25 (125) °C, chip level					
C _{ies}	under following conditions				nF	
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 \text{ V}$, $f = 1 \text{ MHz}$				nF	
C _{res}					nF	
L _{CE}			20		nH	
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125)		0,8 (1,2)		mΩ	
	°C					
$t_{d(on)}/t_r$	V _{CC} = 600 V, I _C = 225 A				ns	
$t_{d(off)}/t_{f}$	$V_{GE} = \pm 15 V$				ns	
$E_{on} \left(E_{off} \right)$	$R_{Gon} = R_{Goff} = 4.3 \Omega$, $T_j = 125 °C$		17 (25)		mJ	
Inverse d	iode					
$V_F = V_{EC}$	I_F = 225 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		2 (1,8)	2,5 (2,3)	V	
$V_{(TO)}$	T _i = 25 (125) °C		1,1	1,2	V	
r _T	$T_{j} = 25 (125) ^{\circ}C$		4	5,8	mΩ	
I_{RRM}	I _F = 225 A; T _j = 25 (125) °C				Α	
Q_{rr}	di/dt = A/μs				μC	
E _{rr}	$V_{GE} = 0 V$				mJ	
Thermal of	characteristics					
$R_{th(j-c)}$	per IGBT			0,075	K/W	
$R_{th(j-c)D}$	per Inverse Diode			0,166	K/W	
$R_{th(j-c)FD}$	per FWD				K/W	
$R_{th(c-s)}$	per module		0,04		K/W	
Temperat	ure sensor					
R ₂₅	$T_c = 25 ^{\circ}C$		5 ±5%		kΩ	
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2-1/T_1)]$; T[K];B		3420		K	
Mechanic	al data				•	
M _s /M _t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm	
W			289		g	
		L			٠	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON