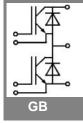

SEMIX 452GB126HD

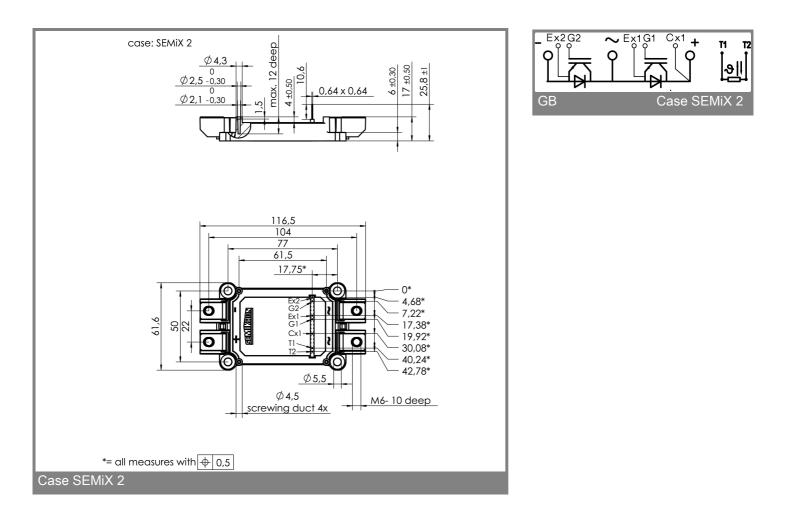
SEMIXTM 2

Trench IGBT Modules

SEMiX 4	452GB126HD
---------	------------

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability


Typical Applications

- AC inverter drives
- UPS
- Electronic welders

Absolute Maximum Ratings T _{case} = 25°C, unless otherwise spe									
Symbol	Conditions	Values	Units						
IGBT									
V _{CES}		1200	V						
I _C	T _c = 25 (80) °C	470 (330)	А						
I _{CRM}	T _c = 25 (80) °C, t _p = 1 ms	940 (660)	А						
V _{GES}		± 20	V						
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C						
V _{isol}	AC, 1 min.	4000	V						
Inverse diode									
I _F = - I _C	T _c = 25 (80) °C	350 (240)	А						
I _{FRM}	T _c = 25 (80) °C, t _p = 1 ms	940 (330)	А						
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$		А						

Characte	ristics T _{ca}	_{ise} = 25°C	$_{se}$ = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
V _{GE(th)} I _{CES}	V _{GE} = V _{CE} , I _C = 12 mA V _{GE} = 0, V _{CE} = V _{CES} , T _i = 25 (125) °C	5	5,8	6,5 2	V mA	
V _{CE(TO)}	$T_i = 25 (125) °C$		1 (0,9)	1,2 (1,1)	V	
r _{CE}	V _{GE} = 15 V, T _i = 25 (125) °C		2,2 (3,7)	3,2 (4,5)	mΩ	
V _{CE(sat)}	I _C = 300 A, V _{GE} = 15 V, T _i = 25 (125) °C, chip level		1,7 (2)	2,15 (2,45)	V	
C _{ies}	under following conditions		22		nF	
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		1,2		nF	
C _{res}			1		nF	
L _{CE}			18		nH	
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125) °C				mΩ	
t _{d(on)} /t _r	$V_{\rm CC} = 600 \text{ V}, \text{ I}_{\rm C} = 300 \text{ A}$				ns	
t _{d(off)} /t _f	$V_{GE} = \pm 15 V$		05 (50)		ns	
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = \Omega, T_j = 125 \ ^{\circ}C$		25 (50)		mJ	
Inverse d		1				
V _F = V _{EC}	I _F = 300 A; V _{GE} = 0 V; T _j = 25 (125) °C, chip level		1,6 (1,6)	1,8 (1,8)	V	
V _(TO)	T _j = 25 (125) °C		1 (0,8)	1,1 (0,9)	V	
r _T	$T_{j} = 25 (125) °C$				mΩ	
I _{RRM}	I _F = 300 A; T _j = 25 (125) °C di/dt = A/μs				A	
Q _{rr}	-				μC	
E _{rr}	V _{GE} = 0 V				mJ	
	characteristics	1			1	
R _{th(j-c)}	per IGBT			0,08	K/W K/W	
R _{th(j-c)D} R	per Inverse Diode per FWD			0,18	K/W	
R _{th(j-c)FD} R _{th(c-s)}	per module		0,045		K/W	
	ture sensor				I	
R ₂₅	$T_{\rm c} = 25 ^{\circ}{\rm C}$	1	5 ±5%		kΩ	
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]; T[K];B$		3420		K	
Mechanic		1				
Mechanic M _s /M _t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm	
w		0/2,0	236	575		
vv			200		g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.