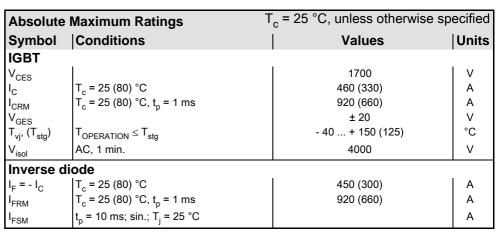
SEMiX 453GB176HDs

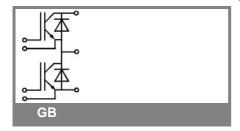
SEMiXTM 3s

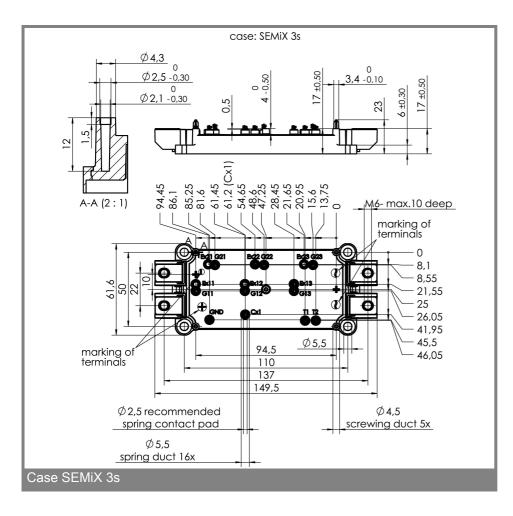
Trench IGBT Modules

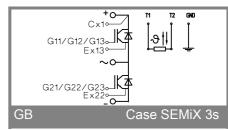
SEMiX 453GB176HDs


Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Characte	ristics	T _c = 25 °C,	_c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT					•	
V _{GE(th)} I _{CES} V _{CE(TO)}	$V_{GE} = V_{CE}, I_{C} = 12 \text{ mA}$ $V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) ^{\circ}\text{C}$ $T_{j} = 25 (125) ^{\circ}\text{C}$ $V_{GE} = 0 \text{ V}, T_{j} = 25 (125) ^{\circ}\text{C}$	5,2	5,8 1 (0,9) 3,3 (5,2)	6,4 2,4 1,2 (1,1) 4,2 (6)	V mA V mΩ	
r _{CE} V _{CE(sat)}	$I_C = 300 \text{ A}, V_{GE} = 15 \text{ V},$ $T_j = 25 (125) ^{\circ}\text{C}, \text{ chip level}$		2 (2,45)	, ,	٧	
C_{ies} C_{oes} C_{res} L_{CE} $R_{\text{CC'+EE'}}$	under following conditions $V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$ $\text{resistance, terminal-chip, T}_{c} = 25 \text{ (125)}$ $^{\circ}\text{C}$		21,3 1,1 0,9 20 0,8 (1,2)		nF nF nF nH mΩ	
$\begin{aligned} & t_{\text{d(on)}}/t_{\text{r}} \\ & t_{\text{d(off)}}/t_{\text{f}} \\ & E_{\text{on}} \left(E_{\text{off}} \right) \end{aligned}$	V _{CC} = 1200 V, I _C = 300 A V _{GE} = ± 15 V		180 (105)		ns ns mJ	
*** ***	$R_{Gon} = R_{Goff} = 5.6 \Omega$, $T_j = 125 °C$		100 (103)		1110	
Inverse d $V_F = V_{EC}$	I _F = 300 A; V _{GE} = 0 V; T _j = 25 (125) °C, chip level		1,7 (1,7)	1,9 (1,9)	V	
V _(TO) r _T I _{RRM} Q _{rr}	$T_j = 25 (125) ^{\circ}C$ $T_j = 25 (125) ^{\circ}C$ $I_F = 300 \text{ A; } T_j = 25 (125) ^{\circ}C$ $\text{di/dt} = A/\mu s$		1,1 (0,9) 2 (2,7)	1,3 (1,1) 2 (2,7)	V mΩ A μC	
E _{rr}	V _{GE} = 0 V				mJ	
$ \begin{array}{c} \textbf{Thermal c} \\ \textbf{R}_{th(j\text{-}c)} \\ \textbf{R}_{th(j\text{-}c)D} \\ \textbf{R}_{th(j\text{-}c)FD} \\ \textbf{R}_{th(c\text{-}s)} \end{array} $	per IGBT per Inverse Diode per FWD per module		0,04	0,07 0,12	K/W K/W K/W	
Temperature sensor						
R ₂₅ B _{25/85}	$T_c = 25 ^{\circ}\text{C}$ $R_2 = R_1 \exp[B(1/T_2 - 1/T_1)] ; T[K]; B$		5 ±5% 3420		kΩ K	
Mechanical data						
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5	289	5 /5	Nm g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON