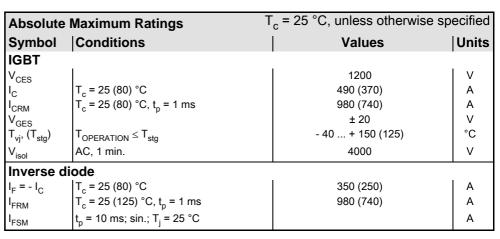
SEMiX 503GB126HDs

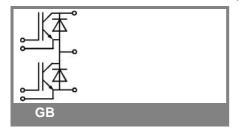
SEMiXTM 3s

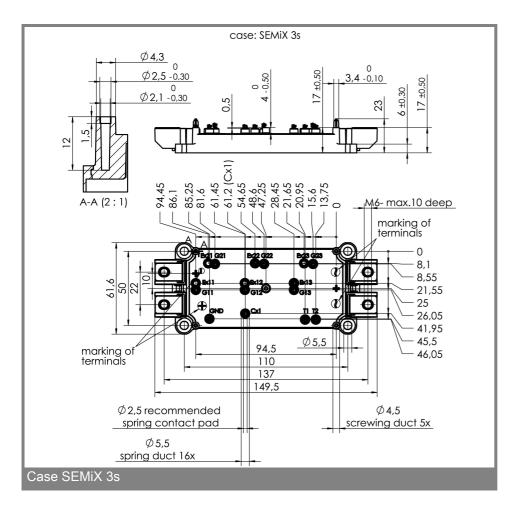
Trench IGBT Modules

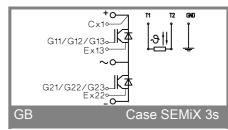
SEMiX 503GB126HDs


Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Characteristics		T _c = 25 °C,	c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
V _{GE(th)} I _{CES} V _{CE(TO)}	$V_{GE} = V_{CE}, I_{C} = 12 \text{ mA}$ $V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) ^{\circ}C$ $T_{j} = 25 (125) ^{\circ}C$ $V_{GF} = 15 \text{ V}, T_{i} = 25 (125) ^{\circ}C$	5	5,8 1 (0,9) 2,2 (3,7)	6,5 2 1,2 (1,1) 3,2 (4,5)	V mA V mΩ	
r _{CE} V _{CE(sat)}	$I_C = 300 \text{ A}, V_{GE} = 15 \text{ V},$ $T_j = 25 (125) ^{\circ}\text{C}, \text{ chip level}$		1,7 (2)	2,15 (2,45)	V	
C _{ies} C _{oes} C _{res} L _{CE} R _{CC'+EE'}	under following conditions $V_{GE} = 0$, $V_{CE} = 25$ V, $f = 1$ MHz resistance, terminal-chip, $T_c = 25$ (125) $^{\circ}$ C		21,6 1,1 1 20 0,8 (1,2)		nF nF nF nH mΩ	
$t_{d(on)}/t_r$ $t_{d(off)}/t_f$ E_{on} (E_{off})	$V_{CC} = 600 \text{ V}, I_{C} = 300 \text{ A}$ $V_{GE} = \pm 15 \text{ V}$ $R_{Gon} = R_{Goff} = 3 \Omega, T_{j} = 125 \text{ °C}$		29 (45)		ns ns mJ	
Inverse diode						
$V_F = V_{EC}$ $V_{(TO)}$ r_T I_{RRM} Q_{rr}	$I_F = 300 \text{ A; } V_{GE} = 0 \text{ V; } T_j = 25 \text{ (125) } ^{\circ}\text{C,}$ chip level $T_j = 25 \text{ (125) } ^{\circ}\text{C}$ $T_j = 25 \text{ (125) } ^{\circ}\text{C}$ $I_F = 300 \text{ A; } T_j = 25 \text{ (125) } ^{\circ}\text{C}$ di/dt = A/ μ s		1,6 (1,6) 1 (0,8) 2 (2,7)	1,8 (1,8) 1,1 (0,9) 2,3 (3)	V V mΩ A μC	
E _{rr}	V _{GE} = 0 V				mJ	
$ \begin{array}{c} \textbf{Thermal c} \\ \textbf{R}_{th(j\text{-}c)} \\ \textbf{R}_{th(j\text{-}c)D} \\ \textbf{R}_{th(j\text{-}c)FD} \\ \textbf{R}_{th(c\text{-}s)} \end{array} $	per IGBT per Inverse Diode per FWD per module		0,04	0,075 0,165	K/W K/W K/W	
Temperature sensor						
R ₂₅ B _{25/85}	$T_c = 25 ^{\circ}\text{C}$ $R_2 = R_1 \exp[B(1/T_2 - 1/T_1)] \; ; \; T[K]; B$		5 ±5% 3420		kΩ K	
Mechanical data						
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5	289	5 /5	Nm g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON