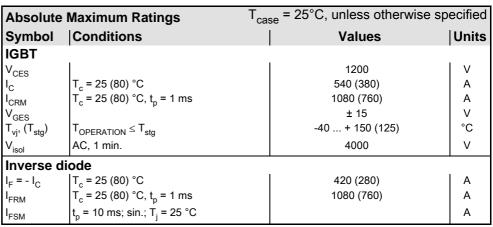
# **SEMIX 553GB128D**

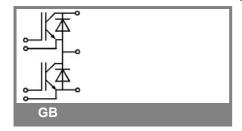


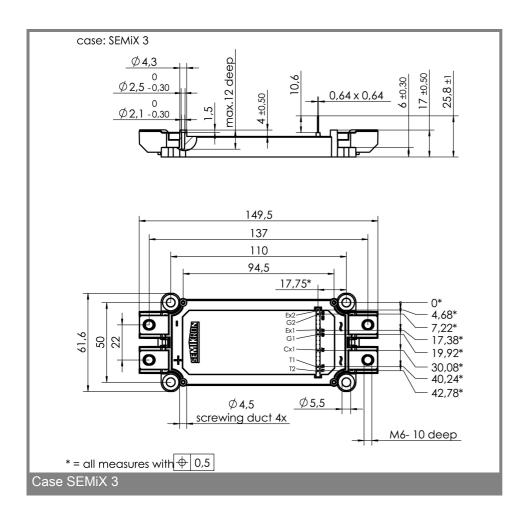
## **SPT IGBT Modules**

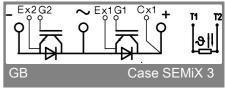
#### **SEMIX 553GB128D**


**Target Data** 

### **Features**


- · Homogeneous Si
- SPT = Soft-Punch-Through technology
- V<sub>CE(sat)</sub> with positive temperature coefficient
- · High short circuit capability


## **Typical Applications**


- AC inverter drives
- UPS
- Electronic welders up to 20 kHz



| Characteristics T <sub>case</sub> = 25°C, unless otherwise specified |                                                                                                                 |       |                    |                      |          |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|--------------------|----------------------|----------|
|                                                                      |                                                                                                                 |       |                    |                      |          |
| •                                                                    | Conditions                                                                                                      | min.  | typ.               | max.                 | Units    |
| IGBT                                                                 | la company de | 1     |                    |                      |          |
| $V_{GE(th)}$                                                         | $V_{GE} = V_{CE}, I_{C} = 12 \text{ mA}$                                                                        | 4,5   | 5                  | 6,5                  | V        |
| I <sub>CES</sub>                                                     | $V_{GE} = 0$ , $V_{CE} = V_{CES}$ , $T_j = 25 (125) °C$                                                         |       | 1 (0 0)            | 0,3                  | mA<br>V  |
| V <sub>CE(TO)</sub>                                                  | T <sub>j</sub> = 25 (125) °C<br>V <sub>GF</sub> = 15 V, T <sub>i</sub> = 25 (125) °C                            |       | 1 (0,9)<br>3 (4,7) | 1,15 (1,05)<br>4 (5) | v<br>mΩ  |
| r <sub>CE</sub>                                                      | $I_C = 300 \text{ A}, V_{GE} = 15 \text{ V},$                                                                   |       | ,                  | 2,35 (2,55)          | V        |
| $V_{CE(sat)}$                                                        | T <sub>i</sub> = 25 (125) °C, chip level                                                                        |       | 1,9 (2,3)          | 2,33 (2,33)          | V        |
| 0                                                                    | , , ,                                                                                                           |       | 00                 |                      |          |
| C <sub>ies</sub>                                                     | under following conditions<br>V <sub>GE</sub> = 0, V <sub>CE</sub> = 25 V, f = 1 MHz                            |       | 26<br>3            |                      | nF<br>nF |
| C <sub>oes</sub>                                                     | GE - 0, V <sub>CE</sub> - 23 V, I - I WII IZ                                                                    |       | 3                  |                      | nF       |
| C <sub>res</sub><br>L <sub>CE</sub>                                  |                                                                                                                 |       | 20                 |                      | nH       |
| R <sub>CC'+EE'</sub>                                                 | resistance, terminal-chip, T <sub>c</sub> = 25 (125)                                                            |       | 0,8 (1,2)          |                      | mΩ       |
| . CO.+EE.                                                            | °C                                                                                                              |       | 0,0 (.,_)          |                      |          |
| $t_{d(on)}/t_r$                                                      | V <sub>CC</sub> = 600 V, I <sub>C</sub> = 300 A                                                                 |       |                    |                      | ns       |
| $t_{d(off)}/t_{f}$                                                   | V <sub>GE</sub> = ± 15 V                                                                                        |       |                    |                      | ns       |
| $E_{on} (E_{off})$                                                   | $R_{Gon} = R_{Goff} = 5 \Omega$ , $T_j = 125 °C$                                                                |       | 32 (31)            |                      | mJ       |
| Inverse diode                                                        |                                                                                                                 |       |                    |                      |          |
| $V_F = V_{EC}$                                                       | $I_F = 300 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125) ^{\circ}\text{C},$<br>chip level                     |       | 2 (1,8)            | 2,5 (2,3)            | V        |
| $V_{(TO)}$                                                           | T <sub>j</sub> = 25 (125) °C                                                                                    |       | 1,1                | 1,45 (1,25)          | V        |
| $r_T$                                                                | $T_{j} = 25 (125) ^{\circ}\text{C}$                                                                             |       | 3                  | 3,5 (3,5)            | mΩ       |
| I <sub>RRM</sub>                                                     | $I_F = 300 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$                                                          |       |                    |                      | A        |
| Q <sub>rr</sub>                                                      | $di/dt = A/\mu s$                                                                                               |       |                    |                      | μC       |
| E <sub>rr</sub>                                                      | V <sub>GE</sub> = 0 V                                                                                           |       |                    |                      | mJ       |
| Thermal characteristics                                              |                                                                                                                 |       |                    |                      |          |
| $R_{th(j-c)}$                                                        | per IGBT                                                                                                        |       |                    | 0,06                 | K/W      |
| $R_{th(j-c)D}$                                                       | per Inverse Diode                                                                                               |       |                    | 0,11                 | K/W      |
| R <sub>th(j-c)FD</sub>                                               | per FWD                                                                                                         |       |                    |                      | K/W      |
| $R_{th(c-s)}$                                                        | per module                                                                                                      |       | 0,04               |                      | K/W      |
| Temperat                                                             | ure sensor                                                                                                      |       |                    |                      |          |
| R <sub>25</sub>                                                      | $T_c = 25 ^{\circ}C$                                                                                            |       | 5 ±5%              |                      | kΩ       |
| B <sub>25/85</sub>                                                   | $R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$ ; T[K];B                                                                     |       | 3420               |                      | K        |
| Mechanical data                                                      |                                                                                                                 |       |                    |                      |          |
| $M_s/M_t$                                                            | to heatsink (M5) / for terminals (M6)                                                                           | 3/2,5 |                    | 5 /5                 | Nm       |
| W                                                                    |                                                                                                                 |       | 289                |                      | g        |







This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON