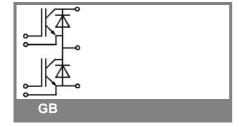

SEMIX 604GB126HD

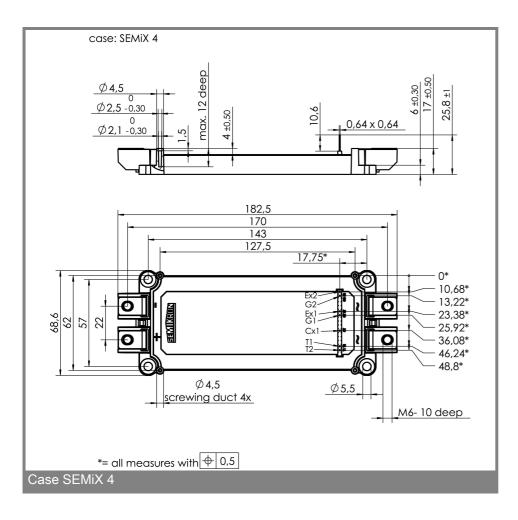
Trench IGBT Modules

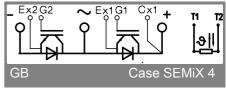
SEMIX 604GB126HD

Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise	_c = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT		<u> </u>					
V_{CES}		1200	V				
I _C	T _c = 25 (80) °C	620 (440)	Α				
I _{CRM}	$T_c = 25 (80) ^{\circ}C, t_p = 1 \text{ ms}$	1240 (880)	Α				
V_{GES}	r	± 20	V				
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	4000	V				
Inverse diode							
$I_F = -I_C$	T _c = 25 (80) °C	500 (340)	Α				
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	1240 (880)	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$		Α				

Characteristics T _c = 25 °C, unless otherwise					
Symbol	Conditions	min.	typ.	max.	Units
IGBT		•			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 16 \text{ mA}$	5	5,8	6,5	V
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$			3	mA
$V_{CE(TO)}$	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	,	V
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		1,75 (2,75)		mΩ
$V_{CE(sat)}$	$I_C = 400 \text{ A}, V_{GE} = 15 \text{ V},$		1,7 (2)	2,15 (2,45)	V
	$T_j = 25 (125) ^{\circ}C$, chip level				
C _{ies}	under following conditions		28,8		nF
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 V$, $f = 1 MHz$		1,5		nF
C _{res}			1,3		nF
L _{CE}			22		nH
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125)				mΩ
	°C				
t _{d(on)} /t _r	V _{CC} = 600 V, I _C = 400 A				ns
$t_{d(off)}/t_{f}$	$V_{GE} = = \pm 15 \text{ V}$				ns
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = \Omega$, $T_j = 125 °C$		36 (64)		mJ
Inverse d	iode				
$V_F = V_{EC}$	I_F = 400 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		1,6 (1,6)	1,8 (1,8)	V
$V_{(TO)}$	T _i = 25 (125) °C		1 (0,8)	1,1 (0,9)	V
r _T	$T_{j} = 25 (125) ^{\circ}C$		1,5 (2)	1,8 (2,3)	mΩ
I_{RRM}	I _F = 400 A; T _j = 25 (125) °C				Α
Q_{rr}	di/dt = A/μs				μC
E _{rr}	V _{GE} = V				mJ
Thermal of	characteristics				
$R_{th(j-c)}$	per IGBT			0,06	K/W
$R_{th(j-c)D}$	per Inverse Diode			0,13	K/W
$R_{th(j-c)FD}$	per FWD				K/W
R _{th(c-s)}	per module		0,03		K/W
	ure sensor				_
R ₂₅	T _c = 25 °C		5 ±5%		kΩ
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K
Mechanic	al data				
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm
w			390		g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON