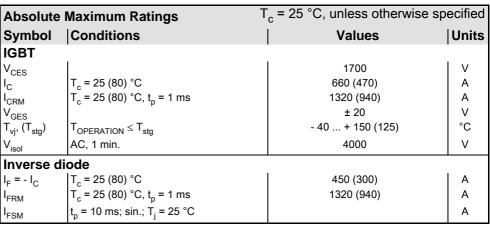
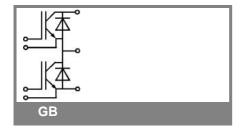
SEMIX 653GB176HD

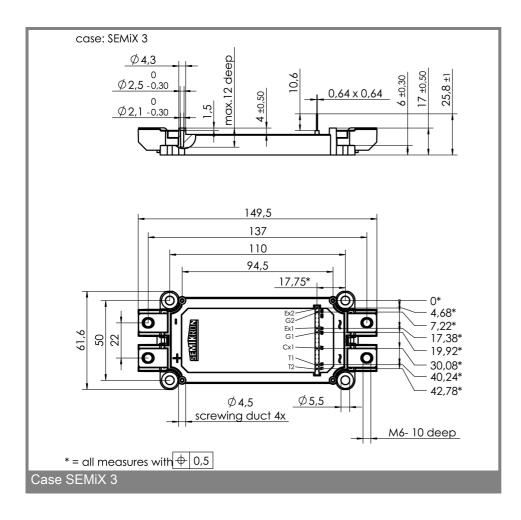
Trench IGBT Modules

SEMiX 653GB176HD


Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Character	ristics	T _c = 25 °C,	_c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT					•	
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 18 \text{ mA}$	5,2	5,8	6,4	V	
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25 (125) °C$			3,6	mA	
V _{CE(TO)}	T _j = 25 (125) °C		1 (0,9)	1,2 (1,1)	V	
r _{CE}	$V_{GE} = 0 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		2,2 (3,4)		mΩ	
V _{CE(sat)}	$I_C = 450 \text{ A}, V_{GE} = 15 \text{ V},$		2 (2,45)	2,45 (2,9)	V	
	T _j = 25 (125) °C, chip level					
C _{ies}	under following conditions		29,7		nF _	
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 V$, $f = 1 MHz$		1,7		nF	
C _{res}			1,3 20		nF	
L _{CE}	unistance (conical skip T OF (405)				nH	
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125)		0,8 (1,2)		mΩ	
	°C					
t _{d(on)} /t _r	$V_{CC} = 1200 \text{ V}, I_{C} = 450 \text{ A}$				ns	
t _{d(off)} /t _f	$V_{GE} = = \pm 15 \text{ V}$				ns	
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = 6.8 \Omega$, $T_j = 125 °C$		360 (170)		mJ	
Inverse di		•			•	
$V_F = V_{EC}$	$I_F = 450 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125) ^{\circ}\text{C},$ chip level		2 (2,1)	2,2 (2,3)	V	
V _(TO)	T _i = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V	
r _T	$T_i = 25 (125) ^{\circ}C$		2 (2,7)	2 (2,7)	mΩ	
I _{RRM}	I _F = 450 A; T _i = 25 (125) °C		_ (_,, ,	_ (_,, ,	Α	
Q _{rr}	di/dt = A/µs				μC	
E _{rr}	V _{GE} = 0 V				mJ	
Thermal o	haracteristics				1	
R _{th(i-c)}	per IGBT			0,048	K/W	
R _{th(i-c)D}	per Inverse Diode			0,12	K/W	
R _{th(j-c)FD}	per FWD				K/W	
R _{th(c-s)}	per module		0,04		K/W	
Temperat	ure sensor					
R ₂₅	T _c = 25 °C		5 ±5%		kΩ	
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2-1/T_1)]$; T[K];B		3420		K	
Mechanical data						
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm	
w			289		g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON