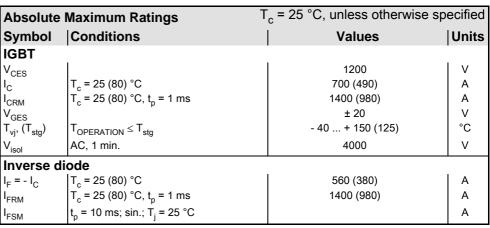
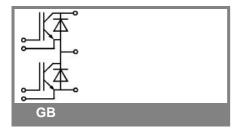
SEMiX 703GB126HDs

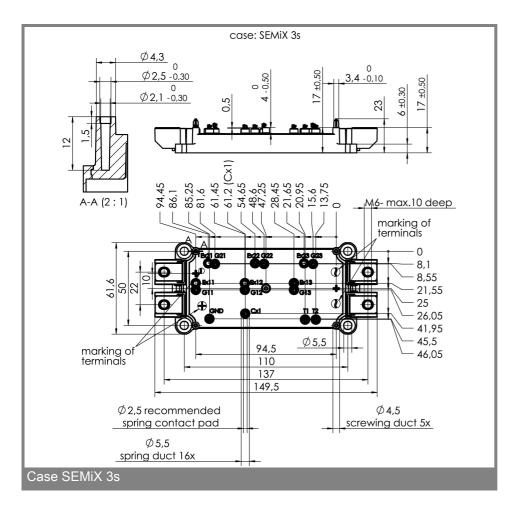
Trench IGBT Modules

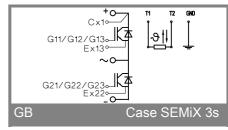
SEMiX 703GB126HDs


Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Characteristics T _c = 25 °C, unless otherwise specif					
Symbol	Conditions	min.	typ.	max.	Units
IGBT					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 18 \text{ mA}$	5	5,8	6,5	V
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$			3	mA
V _{CE(TO)}	T _j = 25 (125) °C		1 (0,9)	,	V
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		1,45 (2,45)		mΩ
V _{CE(sat)}	I _C = 450 A, V _{GE} = 15 V,		1,7 (2)	2,15 (2,45)	V
	T _j = 25 (125) °C, chip level				
C _{ies}	under following conditions		33		nF
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 V$, $f = 1 MHz$		1,7		nF
C _{res}			1,5		nF
L _{CE}			20		nH
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125)		0,8 (1,2)		mΩ
	°C				
t _{d(on)} /t _r	V _{CC} = 600 V, I _C = 450 A				ns
$t_{d(off)}/t_{f}$	V _{GE} = = ± 15 V				ns
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = 2 \Omega$, $T_j = 125 °C$		38 (70)		mJ
Inverse d	iode				
$V_F = V_{EC}$	I_F = 450 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		1,6 (1,6)	1,8 (1,8)	V
$V_{(TO)}$	T _i = 25 (125) °C		1 (0,8)	1,1 (0,9)	V
r _T	$T_{j} = 25 (125) ^{\circ}C$		1,3 (1,8)	1,6 (2)	mΩ
I _{RRM}	I _F = 450 A; T _j = 25 (125) °C				Α
Q_{rr}	di/dt = A/μs				μC
E _{rr}	V _{GE} = V				mJ
Thermal of	characteristics				
$R_{th(j-c)}$	per IGBT			0,055	K/W
$R_{th(j-c)D}$	per Inverse Diode			0,11	K/W
$R_{th(j-c)FD}$	per FWD				K/W
$R_{\text{th(c-s)}}$	per module		0,04		K/W
	ure sensor				
R ₂₅	$T_c = 25 ^{\circ}C$		5 ±5%		kΩ
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2-1/T_1)]$; T[K];B		3420		K
Mechanic	al data	•			
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm
W			289		g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON