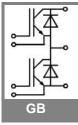

SEMIX 854GB176HD

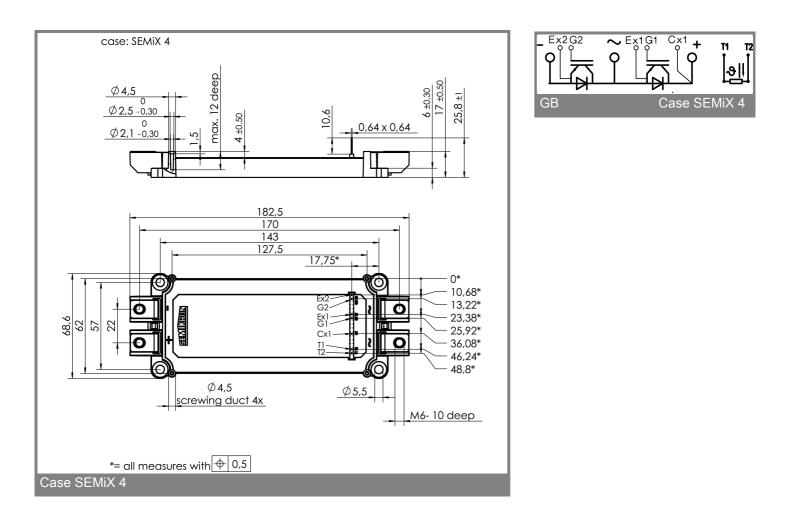
Trench IGBT Modules

SEMiX	854GB176HD
	03400170110

Target Da	ta
-----------	----

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability


Typical Applications

- AC inverter drives
- UPS
- Electronic welders

Absolute	Maximum Ratings	T _c = 25 °C, unless other	T_c = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT							
V _{CES}		1700	V				
I _C	T _c = 25 (80) °C	855 (605)	А				
I _{CRM}	T _c = 25 (80) °C, t _p = 1 ms	1710 (1210)	А				
V _{GES}	r P	± 20	V				
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	4000	V				
Inverse diode							
I _F = - I _C	T _c = 25 (80) °C	620 (425)	А				
I _{FRM}	T _c = 25 (80) °C, t _p = 1 ms	1710 (1210)	А				
I _{FSM}	t _p = 10 ms; sin.; T _j = 25 °C		А				

Characteristics T _c = 25 °C, unless otherwise spec					ecified		
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 24 \text{ mA}$	5,2	5,8	6,4	V		
ICES	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$			3,6	mA		
V _{CE(TO)}	$T_j = 25 (125) °C$		1 (0,9)	1,2 (1,1)	V		
r _{CE}	$V_{GE} = 0 V, T_j = 25 (125) °C$		1,7 (2,6)	/	mΩ		
V _{CE(sat)}	$I_{\rm C} = 600 \text{ A}, V_{\rm GE} = 15 \text{ V},$		2 (2,45)	2,45 (2,9)	V		
	T _j = 25 (125) °C, chip level						
C _{ies}	under following conditions		39,6		nF		
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		2,2		nF		
C _{res}			1,8		nF		
L _{CE}			22		nH		
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125)				mΩ		
	°C						
t _{d(on)} /t _r	$V_{CC} = 1200 \text{ V}, I_{C} = 600 \text{ A}$				ns		
t _{d(off)} /t _f	$V_{GE} = = \pm 15 V$				ns		
$E_{on} \left(E_{off} \right)$	$R_{Gon} = R_{Goff} = \Omega, T_j = 125 \text{ °C}$		480 (225)		mJ		
Inverse d							
V _F = V _{EC}	I _F = 600 A; V _{GE} = 0 V; T _j = 25 (125) °C, chip level		2 (2,1)	2,2 (2,3)	V		
V _(TO)	T _j = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V		
r _T	T _j = 25 (125) °C		1,5 (2)	1,5 (2)	mΩ		
IRRM	$I_F = 600 \text{ A}; T_j = 25 (125) \text{ °C}$				A		
Q _{rr}	di/dt = A/µs				μC		
E _{rr}	$V_{GE} = 0 V$				mJ		
Thermal	characteristics						
R _{th(j-c)}	per IGBT			0,039	K/W		
R _{th(j-c)D}	per Inverse Diode			0,09	K/W		
R _{th(j-c)FD}	per FWD				K/W		
R _{th(c-s)}	per module		0,03		K/W		
Temperat	ture sensor						
R ₂₅	T _c = 25 °C		5 ±5%		kΩ		
B _{25/85}	R ₂ =R ₁ exp[B(1/T ₂ -1/T ₁)] ; T[K];B		3420		к		
	Mechanical data						
M _s /M _t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm		
w			390		g		
	1	1			1		

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.