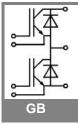

SEMiX 904GB126HD

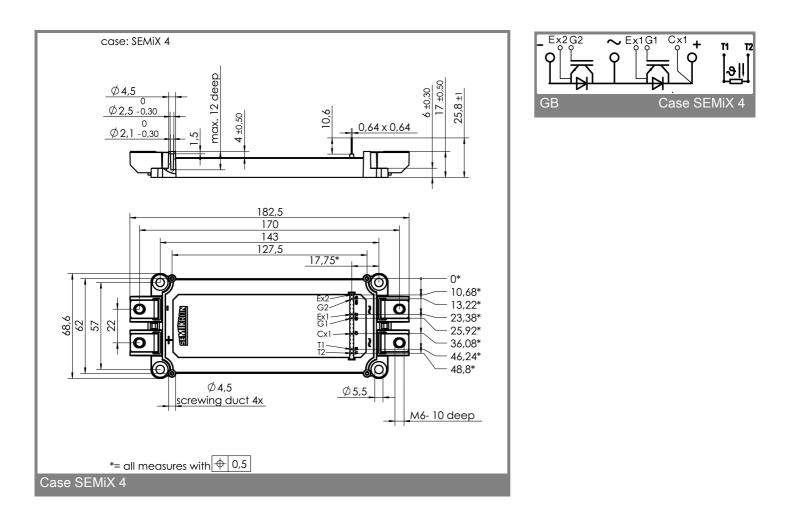
Trench IGBT Modules

A - 1 1 1 1	
SEMIX	904GB126HD

Target Da	ta
-----------	----

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability


Typical Applications

- AC inverter drives
- UPS
- Electronic welders

Absolute Maximum Ratings		T _c = 25 °C, unless other	T_c = 25 °C, unless otherwise specified	
Symbol	Conditions	Values	Units	
IGBT				
V _{CES}		1200	V	
I _C	T _c = 25 (80) °C	910 (640)	А	
I _{CRM}	T _c = 25 (80) °C, t _p = 1 ms	1820 (1280)	А	
V _{GES}		± 20	V	
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C	
V _{isol}	AC, 1 min.	4000	V	
Inverse diode				
I _F = - I _C	T _c = 25 (80) °C	710 (480)	А	
I _{FRM}	T _c = 25 (80) °C, t _p = 1 ms	1800 (1280)	А	
I _{FSM}	t _p = 10 ms; sin.; T _j = 25 °C		А	

Symbol Conditions min. typ. max	-
Symbol Conditions min. typ. max	Units
IGBT	
$V_{GE(th)}$ $V_{GE} = V_{CE}, I_{C} = 24 \text{ mA}$ 5 5,8 6,5	V
$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) ^{\circ}C$ 3	mA
$V_{CE(TO)}$ $T_j = 25 (125) °C$ 1 (0,9) 1,2 (1,1)	,
r_{CE} $V_{GE} = 15 V, T_j = 25 (125) °C$ 1,17 (1,83) 1,6 (2,3)	-
$V_{CE(sat)}$ I _C = 600 A, V _{GE} = 15 V, 1,7 (2) 2,15 (2,4)	5) V
T _j = 25 (125) °C, chip level	
C _{ies} under following conditions 43	nF
C_{oes} $V_{GE} = 0, V_{CE} = 25 V, f = 1 MHz$ 2,3	nF
C _{res} 2 Lor 22	nF
GE	nH
$R_{CC'+EE'}$ resistance, terminal-chip, $T_c = 25$ (125)	mΩ
°C	
$t_{d(on)}/t_r$ $V_{CC} = 600 \text{ V}, I_C = 600 \text{ A}$	ns
$t_{d(off)}/t_{f}$ V _{GE} = = ± 15 V	ns
$E_{on} (E_{off})$ $R_{Gon} = R_{Goff} = \Omega, T_j = 125 \text{°C}$ 51 (101)	mJ
Inverse diode	
$V_F = V_{EC}$ $I_F = 600 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125) \text{ °C},$ 1,6 (1,6) 1,8 (1,6) chip level) V
$V_{(TO)}$ T _j = 25 (125) °C 1 (0.8) 1,1 (0.9)) V
r_{T} $T_{i} = 25 (125) °C$ 1 (1,3) 1,2 (1,5)	
I_{RRM} $I_F = 600 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$	A
Q _{rr} di/dt = A/µs	μC
E _{rr} V _{GE} = V	mJ
Thermal characteristics	
R _{th(j-c)} per IGBT 0,042	K/W
R _{th(j-c)D} per Inverse Diode 0,09	K/W
R _{th(j-c)FD} per FWD	K/W
R _{th(c-s)} per module 0,03	K/W
Temperature sensor	
R_{25} $T_c = 25 °C$ $5 \pm 5\%$	kΩ
$B_{25/85} \qquad R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]; T[K]; B \qquad 3420$	К
Mechanical data	
M_s/M_t to heatsink (M5) / for terminals (M6) 3/2,5 5 /5	Nm
w 390	g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.