
SK 40 GB 123

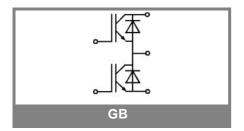
SEMITOP® 2

Fast IGBT Module

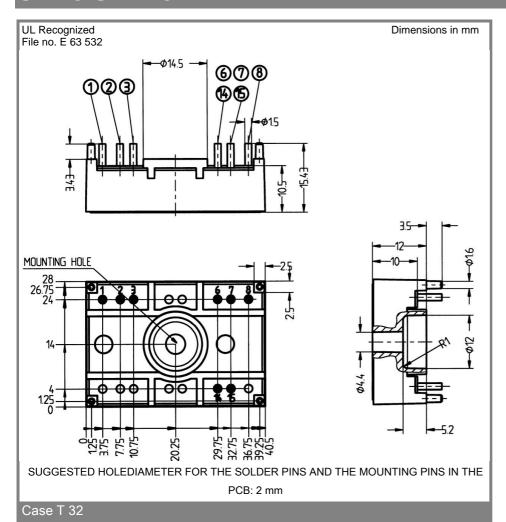
SK 40 GB 123

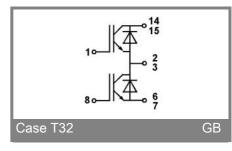
Preliminary Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- Low tail current with low temperature dependence

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1200	V				
V _{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	40 (27)	Α				
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	80 (54)	Α				
T _j		- 40 + 150	°C				
Inverse / Freewheeling CAL diode							
$I_F = -I_C$	T _s = 25 (80) °C;	48 (34)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}C;$	96 (68)	Α				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

Characteristics $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units	
IGBT	•	•			•	
$V_{CE(sat)}$	$I_C = 30 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$		2,5 (3,1)	3 (3,7)	V	
V _{GE(th)}	$V_{CE} = V_{GE}$; $I_{C} = 0,0012 A$	4,5	5,5	6,5	V	
C _{ies}	V _{CE} = 25 V; V _{GE} = 0 V; 1 MHz		2		nF	
$R_{th(j-s)}$	per IGBT			0,85	K/W	
	per module				K/W	
	under following conditions:					
$t_{d(on)}$	$V_{CC} = 600 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$		35		ns	
t _r	I _C = 30 A, T _j = 125 °C		45		ns	
$t_{d(off)}$	$R_{Gon} = R_{Goff} = 20 \Omega$		250		ns	
t_f			45		ns	
$E_{on} + E_{off}$	Inductive load		3,8		mJ	
Inverse /	Freewheeling CAL diode					
$V_F = V_{EC}$	I _F = 30 A; T _i = 25 (125) °C		2 (1,8)		V	
V _(TO)	T _i = (125) °C		(1)	(1,2)	V	
r _T	T _j = (125) °C		(53)	(73)	$m\Omega$	
$R_{th(j-s)}$				1	K/W	
	under following conditions:					
I_{RRM}	I _F = 30 A; V _R = 600 V		32		Α	
Q_{rr}	$dI_F/dt = -400 A/\mu s$		5,4		μC	
E_{off}	V _{GE} = 0 V; T _j = 125 °C		1,2		mJ	
Mechanic	cal data	•				
M1	mounting torque			2	Nm	
w			21		g	
Case	SEMITOP® 2		T 32			

SK 40 GB 123

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.